() Write the given linear system in matrix form. Assume X = y dx = x - y + z +t - 1 dt dy = 4x + y – z – 8t2 dt dz = x + y + z + t2 - t + 4 dt -1 X' = X + t2 x + ? + t + 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Transcription:**

## Linear System in Matrix Form

Given the following system of differential equations, write it in matrix form. Assume \( X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \).

\[
\frac{dx}{dt} = x - y + z + t - 1
\]
\[
\frac{dy}{dt} = 4x + y - z - 8t^2
\]
\[
\frac{dz}{dt} = x + y + z + t^2 - t + 4
\]

We need to express this system using matrices as follows:

\[
X' = \begin{pmatrix} \text{[ ]} & \text{[ ]} & \text{[ ]} \\ \text{[ ]} & \text{[ ]} & \text{[ ]} \\ \text{[ ]} & \text{[ ]} & \text{[ ]} \end{pmatrix} X + \begin{pmatrix} \text{[ ]} \\ \text{[ ]} \\ \text{[ ]} \end{pmatrix} t^2 + \begin{pmatrix} \text{[ ]} \\ \text{[ ]} \\ \text{[ ]} \end{pmatrix} t + \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix}
\]

**Explanation:**

The equations are represented in the matrix form \( X' = AX + B t^2 + Ct + D \), where:
- \( A \) is the coefficient matrix for \( X \).
- \( B \), \( C \), and \( D \) are vectors representing the coefficients for respective terms \( t^2 \), \( t \), and constant terms. 

Fill in the respective values in the matrices to complete the system representation.
Transcribed Image Text:**Transcription:** ## Linear System in Matrix Form Given the following system of differential equations, write it in matrix form. Assume \( X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \). \[ \frac{dx}{dt} = x - y + z + t - 1 \] \[ \frac{dy}{dt} = 4x + y - z - 8t^2 \] \[ \frac{dz}{dt} = x + y + z + t^2 - t + 4 \] We need to express this system using matrices as follows: \[ X' = \begin{pmatrix} \text{[ ]} & \text{[ ]} & \text{[ ]} \\ \text{[ ]} & \text{[ ]} & \text{[ ]} \\ \text{[ ]} & \text{[ ]} & \text{[ ]} \end{pmatrix} X + \begin{pmatrix} \text{[ ]} \\ \text{[ ]} \\ \text{[ ]} \end{pmatrix} t^2 + \begin{pmatrix} \text{[ ]} \\ \text{[ ]} \\ \text{[ ]} \end{pmatrix} t + \begin{pmatrix} -1 \\ 0 \\ 4 \end{pmatrix} \] **Explanation:** The equations are represented in the matrix form \( X' = AX + B t^2 + Ct + D \), where: - \( A \) is the coefficient matrix for \( X \). - \( B \), \( C \), and \( D \) are vectors representing the coefficients for respective terms \( t^2 \), \( t \), and constant terms. Fill in the respective values in the matrices to complete the system representation.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,