Write the function in terms of unit step functions. Find the Laplace transform of the given function. F(s) = 3/s - 6 exp(-5s)/s 5/s²-5 exp(-s)/s² 3/s + 3 exp(-s)/s 5 + 10 exp(-3s) 3s + 6s² exp(5s) 5/s10 exp(-3s)/s 3 + 3 exp(-5s) 5/s3 exp(-10s)/s 0 No solution 5, f(t) = (³-²5 +23 0≤t<3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Write the function in terms of unit step functions. Find the Laplace transform of the given function.
F(s) =
3/s - 6 exp(-5s)/s
5/s² - 5 exp(-s)/s²
3/s + 3 exp(-s)/s
5 + 10 exp(-3s)
3s + 6s² exp(5s)
5/s10 exp(-3s)/s
3 + 3 exp(-5s)
5/s3 exp(-10s)/s
0
No solution
f(t) =
(5,
0 ≤t<3
-5 t23
Transcribed Image Text:Write the function in terms of unit step functions. Find the Laplace transform of the given function. F(s) = 3/s - 6 exp(-5s)/s 5/s² - 5 exp(-s)/s² 3/s + 3 exp(-s)/s 5 + 10 exp(-3s) 3s + 6s² exp(5s) 5/s10 exp(-3s)/s 3 + 3 exp(-5s) 5/s3 exp(-10s)/s 0 No solution f(t) = (5, 0 ≤t<3 -5 t23
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,