Write a system of linear inequalities for the constraints. (x ≥30 B) y 240 x≥40 A) y 230 2x+3y ≤450 x+y≤450 x≥40 C) y 230 2x+3y 2450 Write the objective function which is the profit function, P. A) P=2x+3y B) P=2x+3y + 450 CP=25x+35y x≥30 D) y ≥40 25x+35y 2450 D) P=25x+35y-450
Write a system of linear inequalities for the constraints. (x ≥30 B) y 240 x≥40 A) y 230 2x+3y ≤450 x+y≤450 x≥40 C) y 230 2x+3y 2450 Write the objective function which is the profit function, P. A) P=2x+3y B) P=2x+3y + 450 CP=25x+35y x≥30 D) y ≥40 25x+35y 2450 D) P=25x+35y-450
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
44,45
![A bakery makes two types of birthday cakes: chocolate cake which sells for $25, and
strawberry cake which sells for $35. Each chocolate cake takes 2 hours to make while the
strawberry cake takes 3 hours to make. There is a maximum of 450 hours available to make
the cakes. The owner of the bakery requires the bakery to make at least 40 chocolate cakes
and at least 30 strawberry cakes.
Let x represent the number of chocolate cakes and y represent the number of strawberry cakes.
44. Write a system of linear inequalities for the constraints.
x≥40
A) y 230
2x+3y ≤450
x ≥30
B) y ≥40
x+y≤450
45. Write the objective function which is the profit function, P.
A) P=2x+3y B) P=2x+3y + 450
-110
x ≥ 40
C) y ≥ 30
100-
-90-
-80-
70-
-60
-50-
-40-
30-
-20-
10-
Using the graph of the feasible region, evaluate the objective function with each vertex.
46. (40,30)
47. (40,90)
48. (130, 30)
(40+90)
2x+3y 2450
(40-30)
49. What is the maximum profit?
50. How many chocolate cakes should the bakery
make to maximize profit?
C) P=25x+35y D) P=25x+35y-450
51. How many strawberry cakes should the bakery
make to maximize profit?
[x ≥ 30
D) y ≥40
25x+35y 2450
-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Choices for 46-51:
A) 25
D) 40
AC) 1975
BC) 2170
CD) 4205
(130, 30)
B) 30
E) 90
AD) 2025
BD) 4000
CE) 4300
C) 35
AB) 130
AE) 2050
BE) 4150
DE) 4375](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4fcab995-d368-46f3-a280-74384c62f950%2F87421724-83cb-4945-ba63-ffc820564517%2Fg85ggwn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A bakery makes two types of birthday cakes: chocolate cake which sells for $25, and
strawberry cake which sells for $35. Each chocolate cake takes 2 hours to make while the
strawberry cake takes 3 hours to make. There is a maximum of 450 hours available to make
the cakes. The owner of the bakery requires the bakery to make at least 40 chocolate cakes
and at least 30 strawberry cakes.
Let x represent the number of chocolate cakes and y represent the number of strawberry cakes.
44. Write a system of linear inequalities for the constraints.
x≥40
A) y 230
2x+3y ≤450
x ≥30
B) y ≥40
x+y≤450
45. Write the objective function which is the profit function, P.
A) P=2x+3y B) P=2x+3y + 450
-110
x ≥ 40
C) y ≥ 30
100-
-90-
-80-
70-
-60
-50-
-40-
30-
-20-
10-
Using the graph of the feasible region, evaluate the objective function with each vertex.
46. (40,30)
47. (40,90)
48. (130, 30)
(40+90)
2x+3y 2450
(40-30)
49. What is the maximum profit?
50. How many chocolate cakes should the bakery
make to maximize profit?
C) P=25x+35y D) P=25x+35y-450
51. How many strawberry cakes should the bakery
make to maximize profit?
[x ≥ 30
D) y ≥40
25x+35y 2450
-10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Choices for 46-51:
A) 25
D) 40
AC) 1975
BC) 2170
CD) 4205
(130, 30)
B) 30
E) 90
AD) 2025
BD) 4000
CE) 4300
C) 35
AB) 130
AE) 2050
BE) 4150
DE) 4375
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)