Write a program to assist in the design of a hydroelectric dam. Prompt the user for the height of the dam and for the number of cubic meters of water that are projected to flow from the top to the bottom of the dam each second. Predict how many megawatts (1 MW= 106 W) of power will be produced if 90% of the work done on the water by gravity is converted to electrical energy. Note that the mass of one cubic meter of water is 1000 kg. Use 9.80 meters/second2 as the gravitational constant g. Be sure to use meaningful names for both the gravitational constant and the 90% efficiency constant. For one run, use a height of 170m and flow of 1.30 x 103 m3/s. The relevant formula (w=work, m=mass, g=gravity, h=height) is: w = mgh   Show your result when the dam has a height of 170 meters, and a water flow of 1300 cubic meters per second. The dam can produce an electrical power of 1949.2 Mega-watts.

Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
icon
Related questions
Question

Write a program to assist in the design of a hydroelectric dam. Prompt the user for the height of the dam and for the number of cubic meters of water that are projected to flow from the top to the bottom of the dam each second. Predict how many megawatts (1 MW= 106 W) of power will be produced if 90% of the work done on the water by gravity is converted to electrical energy. Note that the mass of one cubic meter of water is 1000 kg. Use 9.80 meters/second2 as the gravitational constant g. Be sure to use meaningful names for both the gravitational constant and the 90% efficiency constant. For one run, use a height of 170m and flow of 1.30 x 103 m3/s. The relevant formula (w=work, m=mass, g=gravity, h=height) is: w = mgh

 

Show your result when the dam has a height of 170 meters, and a water flow of 1300 cubic meters per second. The dam can produce an electrical power of 1949.2 Mega-watts.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Computer Networking: A Top-Down Approach (7th Edi…
Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON
Computer Organization and Design MIPS Edition, Fi…
Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science
Network+ Guide to Networks (MindTap Course List)
Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning
Concepts of Database Management
Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning
Prelude to Programming
Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education
Sc Business Data Communications and Networking, T…
Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY