Write a "DELTA - EPSILON" proof (that explicitly uses the definition of limit) to PROVE: lim (2x - y) = - 3 (x, y)-(1,5)
Write a "DELTA - EPSILON" proof (that explicitly uses the definition of limit) to PROVE: lim (2x - y) = - 3 (x, y)-(1,5)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please please For the first image attached please do the calculations similar to the second image attached
![[15] (4) Write a "DELTA - EPSILON" proof (that explicitly uses the definition of limit) to
PROVE: lim (5x - 3y) = 1
(x, y)-(2, 3)
PROOF: WE WILL SHOW THAT FOR EACH E >0
307
0<√(x-2)² + (7-3)² < 8⇒|5z-3y.
⇒>|5z-3y-1|<£
☆: |5x-3y-1|=|5(x-2)-3(7-3)|
≤ 5|x-2|+ 3|y-3|
≤ 5 √(x-2)² + 3√(y - 3)²
≤ 5√(x-2)² + (y-3)² + 3√(x-2) + (7-3)²
< 8 √ √ (2-2)² + (7-3)² (Q-STRATEGY)
LET S = &
Now, FOR ANY E >0, S = & and
0 < √ √(x-2)²+(7-3)² < S →
8 √ √(x - 2)² + (7-3)² < E
→|5z-3y-1|< £ (By A)
Hence, (By DEFINITION) (2 fim (32-33) = 1 0
√(x-2)³+ (y-3)² < &
8](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9755e55f-b204-4ec5-8a10-7bbad16cf793%2F12153e18-1c8a-439e-ac5a-f58bb1252c2d%2Fglscjs_processed.jpeg&w=3840&q=75)
Transcribed Image Text:[15] (4) Write a "DELTA - EPSILON" proof (that explicitly uses the definition of limit) to
PROVE: lim (5x - 3y) = 1
(x, y)-(2, 3)
PROOF: WE WILL SHOW THAT FOR EACH E >0
307
0<√(x-2)² + (7-3)² < 8⇒|5z-3y.
⇒>|5z-3y-1|<£
☆: |5x-3y-1|=|5(x-2)-3(7-3)|
≤ 5|x-2|+ 3|y-3|
≤ 5 √(x-2)² + 3√(y - 3)²
≤ 5√(x-2)² + (y-3)² + 3√(x-2) + (7-3)²
< 8 √ √ (2-2)² + (7-3)² (Q-STRATEGY)
LET S = &
Now, FOR ANY E >0, S = & and
0 < √ √(x-2)²+(7-3)² < S →
8 √ √(x - 2)² + (7-3)² < E
→|5z-3y-1|< £ (By A)
Hence, (By DEFINITION) (2 fim (32-33) = 1 0
√(x-2)³+ (y-3)² < &
8
![[15] (4) Write a "DELTA – EPSILON" proof
(that explicitly uses the definition of limit) to
PROVE: lim (2x - y) = -3
(x, y) (1, 5)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9755e55f-b204-4ec5-8a10-7bbad16cf793%2F12153e18-1c8a-439e-ac5a-f58bb1252c2d%2Fnfvpffo_processed.jpeg&w=3840&q=75)
Transcribed Image Text:[15] (4) Write a "DELTA – EPSILON" proof
(that explicitly uses the definition of limit) to
PROVE: lim (2x - y) = -3
(x, y) (1, 5)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)