With the use of functions of 360° and 45°, what is the identity form of cos 315°? a.cos (360°- 45°) = cos 360° cos 45° - sin 360° sin 45° b. cos (360°- 45°) = cos 360° sin 45° – sin 360° cos 45° c. cos (360°- 45°) = cos 360° sin 45° + sin 360° cos 45° d. cos (360°- 45°) = cos 360° cos 45° + sin 360° sin 45°
With the use of functions of 360° and 45°, what is the identity form of cos 315°? a.cos (360°- 45°) = cos 360° cos 45° - sin 360° sin 45° b. cos (360°- 45°) = cos 360° sin 45° – sin 360° cos 45° c. cos (360°- 45°) = cos 360° sin 45° + sin 360° cos 45° d. cos (360°- 45°) = cos 360° cos 45° + sin 360° sin 45°
With the use of functions of 360° and 45°, what is the identity form of cos 315°? a.cos (360°- 45°) = cos 360° cos 45° - sin 360° sin 45° b. cos (360°- 45°) = cos 360° sin 45° – sin 360° cos 45° c. cos (360°- 45°) = cos 360° sin 45° + sin 360° cos 45° d. cos (360°- 45°) = cos 360° cos 45° + sin 360° sin 45°
With the use of functions of 360° and 45°, what is the identity form of cos 315°?
a.cos (360°- 45°) = cos 360° cos 45° - sin 360° sin 45°
b. cos (360°- 45°) = cos 360° sin 45° – sin 360° cos 45°
c. cos (360°- 45°) = cos 360° sin 45° + sin 360° cos 45°
d. cos (360°- 45°) = cos 360° cos 45° + sin 360° sin 45°
Expression, rule, or law that gives the relationship between an independent variable and dependent variable. Some important types of functions are injective function, surjective function, polynomial function, and inverse function.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.