Wind flows over a flat plate of length L = 25 mm and width W = 8 mm. The plate is maintained at a constant temperature of 32 °C on both sides using an electric heater generating heat at a rate of Q = 0.5 W which is dissipated to air from both sides of the plate. Consider the temperature of the wind/air as 20 °C and assume that the wind speed does not exceed 100 m/s. II The properties of air at this temperature are given as; specific heat capacity C, = 1.005 kJ/kg-K, thermal conductivity k = 0.0253 W/m- K, Density p = 1.19 kg/m³, and kinematic viscosity v = 1.522 x 10-5 m²/s. %3D %3D If Prandtl number, Pr= 0.72, determine the flow Reynolds number.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
What’s the correct answer for this please?
Wind flows over a flat plate of length L = 25
mm and width W = 8 mm. The plate is
maintained at a constant temperature of 32 °C
on both sides using an electric heater
generating heat at a rate of Q = 0.5 W which is
dissipated to air from both sides of the plate.
Consider the temperature of the wind/air as
20 °C and assume that the wind speed does not
exceed 100 m/s.
%3D
The properties of air at this temperature are
given as; specific heat capacity C, = 1.005
kJ/kg-K, thermal conductivity k = 0.0253 W/m-
K, Density p = 1.19 kg/m³, and kinematic
viscosity v = 1.522 x 10-5 m²/s.
%3D
If Prandtl number, Pr= 0.72, determine the flow
Reynolds number.
О 2.3 X 104
3.0 X 104
8.2 X 104
O 1.6 X 105
Transcribed Image Text:Wind flows over a flat plate of length L = 25 mm and width W = 8 mm. The plate is maintained at a constant temperature of 32 °C on both sides using an electric heater generating heat at a rate of Q = 0.5 W which is dissipated to air from both sides of the plate. Consider the temperature of the wind/air as 20 °C and assume that the wind speed does not exceed 100 m/s. %3D The properties of air at this temperature are given as; specific heat capacity C, = 1.005 kJ/kg-K, thermal conductivity k = 0.0253 W/m- K, Density p = 1.19 kg/m³, and kinematic viscosity v = 1.522 x 10-5 m²/s. %3D If Prandtl number, Pr= 0.72, determine the flow Reynolds number. О 2.3 X 104 3.0 X 104 8.2 X 104 O 1.6 X 105
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Dimensional Analysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY