Why is the formula of the standard error of D hat is the square root of 1/4 times (0.156 squared + 0.0219 squared)? Where did we get the 1/4?
Why is the formula of the standard error of D hat is the square root of 1/4 times (0.156 squared + 0.0219 squared)? Where did we get the 1/4?
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Why is the formula of the standard error of D hat is the square root of 1/4 times (0.156 squared + 0.0219 squared)? Where did we get the 1/4?

Transcribed Image Text:(i) First compute p
S
=
=
=
104
400
= 0.26. So D=
0.11 +0.26
2
(ii) The standard error of P = 0.0156 is obtained from part (b). The standard error of p, is
py (1 - py) (0.26)(0.74)
400
= 0.0219. So the standard error of Ô is
n
√
= 0.185.
(0.0156² +0.0219²) = 0.0134.
=

Transcribed Image Text:A large company produces an equal number of brand-name lightbulbs and generic lightbulbs. The director of
quality control sets guidelines that production will be stopped if there is evidence that the proportion of all
lightbulbs that are defective is greater than 0.10. The director also believes that the proportion of brand-name
lightbulbs that are defective is not equal to the proportion of generic lightbulbs that are defective. Therefore, the
director wants to estimate the average of the two proportions.
To estimate the proportion of brand-name lightbulbs that are defective, a simple random sample of
400 brand-name lightbulbs is taken and 44 are found to be defective. Let X represent the number of
brand-name lightbulbs that are defective in a sample of 400, and let px represent the proportion of all
brand-name lightbulbs that are defective. It is reasonable to assume that X is a binomial random variable.
The standard error of px is approximately 0.0156.
To estimate the proportion of generic lightbulbs that are defective, a simple random sample of 400 generic
lightbulbs is taken and 104 are found to be defective. Let Y represent the number of generic lightbulbs that are
defective in a sample of 400. It is reasonable to assume that Y is a binomial random variable and the distribution
of py is approximately normal, with an approximate standard error of 0.0219. It is also reasonable to assume
that X and Y are independent.
The parameter of interest for the manager of quality control is D, the average proportion of defective lightbulbs
Px + Py
for the brand-name and the generic lightbulbs. D is defined as D =
2
(d) Consider D, the point estimate of D.
(i) Calculate D using data from the sample of brand-name lightbulbs and the sample of generic
lightbulbs.
(ii) Calculates, the standard error of D.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps

Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Where did we get the one over two-squared? I don't understand why it is one over 2^2 Variance (Px+Py).
Solution
Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman