Why is it that my standard residuals appear to be non-linear yet the rest of my results appear linear? What does this imply in context to the topic? (strengths dependency on weight). If there is something wrong with my R script please let me know. Or if there is a reason as to why this has happened.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Why is it that my standard residuals appear to be non-linear yet the rest of my results appear linear? What does this imply in context to the topic? (strengths dependency on weight). If there is something wrong with my R script please let me know. Or if there is a reason as to why this has happened.
100 110 120
Bench press standards per class of body weight (kg) - Average
Sample Quantiles
06
80
70
0.0 0.5 1.0
-1.0
-2.0
O
O
60
Scatterplot for average
O
80
-1.5 -1.0
0
100
-0.5
Body Weight (kg)
O
Q-Q Plot
O
120
0.0 0.5
Theoretical Quantiles
O
O
1.0
140
O
1.5
O
stdres
0.0 0.5 1.0
stdres
-1.0
-2.0
1.0
0.5
0.0
-0.5
-1.5 -1.0
-2.0
Std residuals versus explanatory variable
O
T
09
o
80
O
O
80
90
O
O
Body Weight (kg)
O
Std residuals versus fits
O
100
100
O
fits
O
120
110
O
120
140
130
O
Transcribed Image Text:100 110 120 Bench press standards per class of body weight (kg) - Average Sample Quantiles 06 80 70 0.0 0.5 1.0 -1.0 -2.0 O O 60 Scatterplot for average O 80 -1.5 -1.0 0 100 -0.5 Body Weight (kg) O Q-Q Plot O 120 0.0 0.5 Theoretical Quantiles O O 1.0 140 O 1.5 O stdres 0.0 0.5 1.0 stdres -1.0 -2.0 1.0 0.5 0.0 -0.5 -1.5 -1.0 -2.0 Std residuals versus explanatory variable O T 09 o 80 O O 80 90 O O Body Weight (kg) O Std residuals versus fits O 100 100 O fits O 120 110 O 120 140 130 O
Residuals:
Min
-10.531 -4.989
Coefficients:
10 Median
3Q
1.869 5.267
(Intercept)
`Body Weight (kg) `
Signif. codes: 0 *** 0.001
`Body Weight (kg) `
Residuals
Estimate Std. Error t value Pr (>|t|)
42.62755
6.209 0.000157
0.62692
8.402 1.49e-05 ***
7
Residual standard error: 7.077 on 9 degrees of freedom
Multiple R-squared: 0.8869, Adjusted R-squared:
F-statistic: 70.6 on 1 and 9 DF, p-value: 1.492e-05
8
> abline (Regression.model, col=4, lwd=3)
> anova (Regression.model)
Analysis of Variance Table
Response: Bench press standards per class of body weight (kg) - Average
Sum Sq Mean Sq F value
Pr (>F)
6.86517
0.07461
1**/
2
Signif. codes:
1**/
0 *** 0.001
> stdres<- rstandard (Regression.model)
> print (stdres)
1
Max
7.950
9
Df
1 3536.0 3536.0 70.601 1.492e-05 ***
9 450.8
50.1
0.01 * 0.05 ¹.0.1 1
>qqline (stdres)
> shapiro.test(stdres)
3
data: stdres
W = 0.91857, p-value = 0.3069
10
-1.4864868 -1.0645996 -0.5043759 0.2843252 0.6513863 1.1083291
1.1786018
Shapiro-Wilk normality test
0.8744
0.01 1*1 0.05. 0.1 1
4
0.9248828 0.5985440 -0.3245869 -2.0230776
11
> plot (Body Weight (kg)`, stdres, main="Std residuals versus
explanatory variable")
> fits<- fitted (Regression.model)
> plot (fits, stdres, main="Std residuals versus fits")
> qqnorm (stdres, main="Q-Q Plot")
5
6
Transcribed Image Text:Residuals: Min -10.531 -4.989 Coefficients: 10 Median 3Q 1.869 5.267 (Intercept) `Body Weight (kg) ` Signif. codes: 0 *** 0.001 `Body Weight (kg) ` Residuals Estimate Std. Error t value Pr (>|t|) 42.62755 6.209 0.000157 0.62692 8.402 1.49e-05 *** 7 Residual standard error: 7.077 on 9 degrees of freedom Multiple R-squared: 0.8869, Adjusted R-squared: F-statistic: 70.6 on 1 and 9 DF, p-value: 1.492e-05 8 > abline (Regression.model, col=4, lwd=3) > anova (Regression.model) Analysis of Variance Table Response: Bench press standards per class of body weight (kg) - Average Sum Sq Mean Sq F value Pr (>F) 6.86517 0.07461 1**/ 2 Signif. codes: 1**/ 0 *** 0.001 > stdres<- rstandard (Regression.model) > print (stdres) 1 Max 7.950 9 Df 1 3536.0 3536.0 70.601 1.492e-05 *** 9 450.8 50.1 0.01 * 0.05 ¹.0.1 1 >qqline (stdres) > shapiro.test(stdres) 3 data: stdres W = 0.91857, p-value = 0.3069 10 -1.4864868 -1.0645996 -0.5043759 0.2843252 0.6513863 1.1083291 1.1786018 Shapiro-Wilk normality test 0.8744 0.01 1*1 0.05. 0.1 1 4 0.9248828 0.5985440 -0.3245869 -2.0230776 11 > plot (Body Weight (kg)`, stdres, main="Std residuals versus explanatory variable") > fits<- fitted (Regression.model) > plot (fits, stdres, main="Std residuals versus fits") > qqnorm (stdres, main="Q-Q Plot") 5 6
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman