Why is answer A+B=1 and 2A-3B=-2 ?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Why is answer A+B=1 and 2A-3B=-2 ?
![The image shows a handwritten mathematical solution for the partial fraction decomposition of a rational function.
---
**Problem:**
Given the rational function:
\[ Y(s) = \frac{s - 2}{s^2 - s - 6} \]
Factor the denominator:
\[ s^2 - s - 6 = (s - 3)(s + 2) \]
The function can be decomposed into partial fractions as follows:
\[ \frac{s - 2}{(s - 3)(s + 2)} = \frac{A}{s - 3} + \frac{B}{s + 2} \]
**Steps to solve:**
1. **Clear the denominators:**
\[ s - 2 = A(s + 2) + B(s - 3) \]
2. **Expand and simplify:**
\[ A(s + 2) + B(s - 3) = As + 2A + Bs - 3B \]
Combine like terms:
\[ (A + B)s + (2A - 3B) \]
3. **Compare coefficients:**
For the expression to equal \( s - 2 \), equate coefficients:
\[ A + B = 1 \]
\[ 2A - 3B = -2 \]
This system of equations can be solved to find \( A \) and \( B \).
There are no graphs or additional diagrams included in the image.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6b9f9fa7-cab4-4dbd-8980-f3534e4105e4%2F932694c1-9d2f-4076-8bee-82ed7375136f%2Frc9znjk_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image shows a handwritten mathematical solution for the partial fraction decomposition of a rational function.
---
**Problem:**
Given the rational function:
\[ Y(s) = \frac{s - 2}{s^2 - s - 6} \]
Factor the denominator:
\[ s^2 - s - 6 = (s - 3)(s + 2) \]
The function can be decomposed into partial fractions as follows:
\[ \frac{s - 2}{(s - 3)(s + 2)} = \frac{A}{s - 3} + \frac{B}{s + 2} \]
**Steps to solve:**
1. **Clear the denominators:**
\[ s - 2 = A(s + 2) + B(s - 3) \]
2. **Expand and simplify:**
\[ A(s + 2) + B(s - 3) = As + 2A + Bs - 3B \]
Combine like terms:
\[ (A + B)s + (2A - 3B) \]
3. **Compare coefficients:**
For the expression to equal \( s - 2 \), equate coefficients:
\[ A + B = 1 \]
\[ 2A - 3B = -2 \]
This system of equations can be solved to find \( A \) and \( B \).
There are no graphs or additional diagrams included in the image.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)