Which of the sequences {an} converge, andwhich diverge? Find the limit of each convergent sequence. an = (ln 3 - ln 2) + (ln 4 - ln 3) + (ln 5 - ln 4) +....+ (ln (n - 1) - ln (n - 2)) + (ln n - ln (n - 1))

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Which of the sequences {an} converge, and
which diverge? Find the limit of each convergent sequence. an = (ln 3 - ln 2) + (ln 4 - ln 3) + (ln 5 - ln 4) +....+ (ln (n - 1) - ln (n - 2)) + (ln n - ln (n - 1))

Expert Solution
Step 1

The given sequence,

an=ln 3-ln 2+ln 4-ln 3+ln 5-ln 4+.....+ln n-1-ln n-2+ln n-ln n-1

We have to check whether the sequence is convergent or divergent.

Step 2

If the sequence an is convergent, then the limit limnan exits finitely.

Now, the given sequence,

an=ln 3-ln 2+ln 4-ln 3+ln 5-ln 4+.....+ln n-1-ln n-2+ln n-ln n-1

Simplify the expression,

an=ln 3-ln 2+ln 4-ln 3+ln 5-ln 4+.....+ln n-1-ln n-2+ln n-ln n-1=ln 3-ln 2+ln 4-ln 3+ln 5-ln 4+.....+ln n-1-ln n-2+ln n-ln n-1=lnn-ln 2=lnn2an=lnn2

Now, take the limit as n.

limnan=limnlnn2=ln=

Here the limit limnan is infinite.

Thus the sequence is divergent.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Sequence
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,