Which of the following statements is/are true? I. q (heat) is a state function because ΔH is a state function and q = ΔH. II. When 50.0 g of aluminum at 20.0°C is placed in 50.0 mL of water at 30.0°C, the H2O will undergo a smaller temperature change than the aluminum. (The density of H2O = 1.0 g/mL, specific heat capacity of H2O = 4.18 J/g°C, specific heat capacity of aluminum = 0.89 J/g°C) III. When a gas is compressed, the work is negative since the surroundings are doing work on the system and energy flows out of the system.
Thermochemistry
Thermochemistry can be considered as a branch of thermodynamics that deals with the connections between warmth, work, and various types of energy, formed because of different synthetic and actual cycles. Thermochemistry describes the energy changes that occur as a result of reactions or chemical changes in a substance.
Exergonic Reaction
The term exergonic is derived from the Greek word in which ‘ergon’ means work and exergonic means ‘work outside’. Exergonic reactions releases work energy. Exergonic reactions are different from exothermic reactions, the one that releases only heat energy during the course of the reaction. So, exothermic reaction is one type of exergonic reaction. Exergonic reaction releases work energy in different forms like heat, light or sound. For example, a glow stick releases light making that an exergonic reaction and not an exothermic reaction since no heat is released. Even endothermic reactions at very high temperature are exergonic.
-
Which of the following statements is/are true?
I. q (heat) is a state function because ΔH is a state function and q = ΔH. II. When 50.0 g of aluminum at 20.0°C is placed in 50.0 mL of water at 30.0°C, the H2O will undergo a smaller temperature change than the aluminum. (The density of H2O = 1.0 g/mL, specific heat capacity of H2O = 4.18 J/g°C, specific heat capacity of aluminum = 0.89 J/g°C) III. When a gas is compressed, the work is negative since the surroundings are doing work on the system and energy flows out of the system. IV. For the reaction (at constant pressure) 2N2(g) + 5O2(g) → 2N2O5(g), the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps. a. I, II, IVb. II, IIIc. II, III, IVd. II, IVe. All of the above statements are true.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps