Which of the following is true about the probability density function (pdf) of a continuous random variable? cdf(y)-cdf(x) represents the probability the random variable is less than y but greater than or equal to x. You may assume y>x and cdf stands for the cumulative density function, O It can never be higher than one, because probabilities are never higher than one The area underneath it must be positive and strictly less than one O You have to be careful to note the '=' part of any inequalities when working out probabilities
Which of the following is true about the probability density function (pdf) of a continuous random variable? cdf(y)-cdf(x) represents the probability the random variable is less than y but greater than or equal to x. You may assume y>x and cdf stands for the cumulative density function, O It can never be higher than one, because probabilities are never higher than one The area underneath it must be positive and strictly less than one O You have to be careful to note the '=' part of any inequalities when working out probabilities
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![Which of the following is true about the probability density function (pdf) of a continuous random
variable?
cdf(y)-cdf(x) represents the probability the random variable is less than y but greater than or equal to x. You
may assume y>x and cdf stands for the cumulative density function,
It can never be higher than one, because probabilities are never higher than one
The area underneath it must be positive and strictly less than one
You have to be careful to note the '=' part of any inequalities when working out probabilities](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a779339-72d8-46cd-b912-46f6451a66f3%2F2acf6ba1-3904-43b0-9c17-9894dea39fc6%2Fqjvdlal_processed.png&w=3840&q=75)
Transcribed Image Text:Which of the following is true about the probability density function (pdf) of a continuous random
variable?
cdf(y)-cdf(x) represents the probability the random variable is less than y but greater than or equal to x. You
may assume y>x and cdf stands for the cumulative density function,
It can never be higher than one, because probabilities are never higher than one
The area underneath it must be positive and strictly less than one
You have to be careful to note the '=' part of any inequalities when working out probabilities
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman