Which of the following is the general solution of the linear system 1 x ? -2 -2 Lütfen birini seçin: x1(t) = (c1 cos t - c2 sin t)e¬t 12(t) = [c1(cost – sin t) + c2(sin t + cos t)]e=t 1(t) = (c1 cos t +c2 sin t)e r2(t) = [c1(cos t + sin t) + c2(sin t – cos t)]e¬t x1(t) = (c1 cos 2t + c2 sin 2t)e' r2(t) = [c1(cos 2t – 2 sin 21) + c2(sin 2t + 2 cos 2t)]e" 1(t) = (c1 cos t + c2 sin t)e¬ r2(t) = [-c1 (cos t + sin t) + c2(cos t – sin t)]e¯t %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following is the general solution of the
linear system
1
x ?
-2 -2
Lütfen birini seçin:
r1(t) = (c1 cos t – c2 sin t)e
12(t) = [c1(cost - sin t) + c2(sint + cos t)]e¬t
1(t) = (c1 cos t + c2 sin t)e¬
r2(t) = [c1(cos t + sin t) + c2(sin t – cos t)]et
z1(t) = (c1 cos 2t + c2 sin 2t)e'
r2(t) = [c1(cos 2t – 2 sin 21)
+ c2(sin 2t + 2 cos 2t)]e*
1(t) = (c1 cos t +c2 sin t)e¬
r2(t) = [-c1(cost + sin t) + c2(cos t – sin t)]e¬
11(t) = (c1 cost – c2 sin t)et
r2(t) = [c1(cos t– 2 sin t) +c2(sin t+2 cos t)]e=
%3D
%3D
Transcribed Image Text:Which of the following is the general solution of the linear system 1 x ? -2 -2 Lütfen birini seçin: r1(t) = (c1 cos t – c2 sin t)e 12(t) = [c1(cost - sin t) + c2(sint + cos t)]e¬t 1(t) = (c1 cos t + c2 sin t)e¬ r2(t) = [c1(cos t + sin t) + c2(sin t – cos t)]et z1(t) = (c1 cos 2t + c2 sin 2t)e' r2(t) = [c1(cos 2t – 2 sin 21) + c2(sin 2t + 2 cos 2t)]e* 1(t) = (c1 cos t +c2 sin t)e¬ r2(t) = [-c1(cost + sin t) + c2(cos t – sin t)]e¬ 11(t) = (c1 cost – c2 sin t)et r2(t) = [c1(cos t– 2 sin t) +c2(sin t+2 cos t)]e= %3D %3D
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,