Which of the following fundamental identities is a reciprocal identity? 7 O sin(-8)= -sin(e) O csc(8) = sec (5-8) - O tan² (8) + 1 = sec²(0) cot( 8 ) = tan(0)
Which of the following fundamental identities is a reciprocal identity? 7 O sin(-8)= -sin(e) O csc(8) = sec (5-8) - O tan² (8) + 1 = sec²(0) cot( 8 ) = tan(0)
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Identifying Reciprocal Trigonometric Identities**
**Question:**
Which of the following fundamental identities is a reciprocal identity?
**Options:**
1. \( \sin(-\theta) = -\sin(\theta) \)
2. \( \csc(\theta) = \sec\left(\frac{\pi}{2} - \theta\right) \)
3. \( \tan^2(\theta) + 1 = \sec^2(\theta) \)
4. \( \cot(\theta) = \frac{1}{\tan(\theta)} \)
**Explanation:**
Reciprocal identities in trigonometry are relationships where a trigonometric function is defined as the reciprocal of another trigonometric function. From the given options, let's analyze each one:
1. **Option 1:** \( \sin(-\theta) = -\sin(\theta) \)
- This identity is an odd function property of sine, not a reciprocal identity.
2. **Option 2:** \( \csc(\theta) = \sec\left(\frac{\pi}{2} - \theta\right) \)
- This represents a co-function identity, where the secant of the complementary angle is equal to the cosecant.
3. **Option 3:** \( \tan^2(\theta) + 1 = \sec^2(\theta) \)
- This is a Pythagorean identity, not a reciprocal one.
4. **Option 4:** \( \cot(\theta) = \frac{1}{\tan(\theta)} \)
- This is a reciprocal identity because cotangent is defined as the reciprocal of the tangent function.
**Correct Answer:**
The reciprocal identity is \( \cot(\theta) = \frac{1}{\tan(\theta)} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4c67c4d0-217c-4e3e-983c-7902447cdce8%2F4853f6ef-85a0-4099-978d-dab30afd460d%2F0dyauy_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Identifying Reciprocal Trigonometric Identities**
**Question:**
Which of the following fundamental identities is a reciprocal identity?
**Options:**
1. \( \sin(-\theta) = -\sin(\theta) \)
2. \( \csc(\theta) = \sec\left(\frac{\pi}{2} - \theta\right) \)
3. \( \tan^2(\theta) + 1 = \sec^2(\theta) \)
4. \( \cot(\theta) = \frac{1}{\tan(\theta)} \)
**Explanation:**
Reciprocal identities in trigonometry are relationships where a trigonometric function is defined as the reciprocal of another trigonometric function. From the given options, let's analyze each one:
1. **Option 1:** \( \sin(-\theta) = -\sin(\theta) \)
- This identity is an odd function property of sine, not a reciprocal identity.
2. **Option 2:** \( \csc(\theta) = \sec\left(\frac{\pi}{2} - \theta\right) \)
- This represents a co-function identity, where the secant of the complementary angle is equal to the cosecant.
3. **Option 3:** \( \tan^2(\theta) + 1 = \sec^2(\theta) \)
- This is a Pythagorean identity, not a reciprocal one.
4. **Option 4:** \( \cot(\theta) = \frac{1}{\tan(\theta)} \)
- This is a reciprocal identity because cotangent is defined as the reciprocal of the tangent function.
**Correct Answer:**
The reciprocal identity is \( \cot(\theta) = \frac{1}{\tan(\theta)} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning