Which of the following functions is the unique solution of the IBVP Ut=4uxx 0 0 u(0, t) = u(2n, t) = 0, t> 0 u(x, 0) = 2 sin x -sin 4x, Select one: O A. u(x, t) = 2 sin æe 4t sin 4re 16t u(x, t) = sin æe-16t 2 sin 4xe-64t u(x, t) = sin æe 4t - 2 sin 4xe-64t u(x, t) = 2 sin æe-8t sin 4re-32t sin 4æe-64t OB. O C. O D. O E. u(x, t) = 2 sin ze 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions is the unique solution of the IBVP
Ut=4uxx 0<x<2n, t>0
u(0, t) = u(2n, t) = 0, t> 0
u(x,0) = 2 sin x - sin 4x,
0<x< 2n.
Select one:
O A. u(x, t) = 2 sin æe 4t
sin 4re 16t
u(x, t) = sin æe 16t
2 sin 4xe-64t
u(x, t) = sin æe 4t - 2 sin 4xe-64t
u(x, t) = 2 sin æe-8t
sin 4re-32t
u(x, t) = 2 sin æe 4t
-sin 4æe-64t
OB.
O C.
O D.
O E.
Transcribed Image Text:Which of the following functions is the unique solution of the IBVP Ut=4uxx 0<x<2n, t>0 u(0, t) = u(2n, t) = 0, t> 0 u(x,0) = 2 sin x - sin 4x, 0<x< 2n. Select one: O A. u(x, t) = 2 sin æe 4t sin 4re 16t u(x, t) = sin æe 16t 2 sin 4xe-64t u(x, t) = sin æe 4t - 2 sin 4xe-64t u(x, t) = 2 sin æe-8t sin 4re-32t u(x, t) = 2 sin æe 4t -sin 4æe-64t OB. O C. O D. O E.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,