Which of the following functions is the unique solution of the IBVP 0 < x < 2T, t> 0 AUTI u(0, t) = u(2π, t) = 0, t> 0 u(x,0) = sin x 2 sin 4x, T Select one: OA. u(x, t) = sin re OB. u(x, t) = 2 sin ze OC. u(x, t) = sin ze 4t OD. u(x, t) = sin ze 8t 4t E. u(x, t) = 2 sin ze 16t 4t 0 < x < 2. 2 sin 4xe 16t sin 4xe-32t 2 sin 4xe 16t 2 sin 4re-64t sin 4xe 64t پر

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Which of the following functions is the unique solution of the IBVP
Ut = 4uzz, 0<x< 2π, t > 0
u(0, t) = u(2n, t) = 0, t> 0
u(x,0) = sinx - 2 sin 4x,
Select one:
A. u(x, t)
B. u(x, t) = 2 sin re
sin re
41
sin re
8t
16t
Cu(x, t)
D. u(x, t) = sin ze
E u(x, t) = 2 sin æe 4t
0<x< 2π.
2 sin 4xe 16t
sin 4xe-32t
2 sin 4xe
2 sin 4xe
16t
64t
sin 4xe 64t
R
Transcribed Image Text:Which of the following functions is the unique solution of the IBVP Ut = 4uzz, 0<x< 2π, t > 0 u(0, t) = u(2n, t) = 0, t> 0 u(x,0) = sinx - 2 sin 4x, Select one: A. u(x, t) B. u(x, t) = 2 sin re sin re 41 sin re 8t 16t Cu(x, t) D. u(x, t) = sin ze E u(x, t) = 2 sin æe 4t 0<x< 2π. 2 sin 4xe 16t sin 4xe-32t 2 sin 4xe 2 sin 4xe 16t 64t sin 4xe 64t R
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,