Which of the following functions are solutions of the differential equation y" - 2y – 8y = 0? A. y(x) = e4x В. У(х) %3D е-2х С. у(х) — 0 D. y(x) 3D е-х E. y(x) = 4x F. y(x) = e* G. y(x) — —2х %3D II

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Differential Equations: Identifying Solutions**

**Question**  
Which of the following functions are solutions of the differential equation \( y'' - 2y' - 8y = 0 \)?

**Options**  
- **A.** \( y(x) = e^{4x} \)

- **B.** \( y(x) = e^{-2x} \)

- **C.** \( y(x) = 0 \)

- **D.** \( y(x) = e^{-x} \)

- **E.** \( y(x) = 4x \)

- **F.** \( y(x) = e^{x} \)

- **G.** \( y(x) = -2x \)
Transcribed Image Text:**Differential Equations: Identifying Solutions** **Question** Which of the following functions are solutions of the differential equation \( y'' - 2y' - 8y = 0 \)? **Options** - **A.** \( y(x) = e^{4x} \) - **B.** \( y(x) = e^{-2x} \) - **C.** \( y(x) = 0 \) - **D.** \( y(x) = e^{-x} \) - **E.** \( y(x) = 4x \) - **F.** \( y(x) = e^{x} \) - **G.** \( y(x) = -2x \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,