Which is the correct expansion of (z +4y)³ using the binomial theorem? ° (z + 4y)² = (3) (z)³(43)° + (³) (²)}² (w)² + (2) (-)³(w)² + (3) (-2°(43)³ ○ (z+4y)² = (4) + (z)²(4y)³¹ + (z)¹ (4y)² + (z)³(49)³ * (z + 4y)² = (3) (43)³¹ (2)° + (³) (4³(z)³¹ + (2) 4)³(2³² + (3) 4°(z)³ O (z+4y)² = (z) (4y) + (z)³¹ (4y)² + (z)² (4y)² + (z)³ (4y)³
Which is the correct expansion of (z +4y)³ using the binomial theorem? ° (z + 4y)² = (3) (z)³(43)° + (³) (²)}² (w)² + (2) (-)³(w)² + (3) (-2°(43)³ ○ (z+4y)² = (4) + (z)²(4y)³¹ + (z)¹ (4y)² + (z)³(49)³ * (z + 4y)² = (3) (43)³¹ (2)° + (³) (4³(z)³¹ + (2) 4)³(2³² + (3) 4°(z)³ O (z+4y)² = (z) (4y) + (z)³¹ (4y)² + (z)² (4y)² + (z)³ (4y)³
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Question:**
Which is the correct expansion of \((x + 4y)^3\) using the binomial theorem?
1. \((x + 4y)^3 = \binom{3}{0} (x)^3 (4y)^0 + \binom{3}{1} (x)^2 (4y)^1 + \binom{3}{2} (x)^1 (4y)^2 + \binom{3}{3} (x)^0 (4y)^3\)
2. \((x + 4y)^3 = (4y)^0 + (x)^2 (4y)^1 + (x)^1 (4y)^2 + (x)^0 (4y)^3\)
3. \((x + 4y)^3 = \binom{3}{0} (4y)^3 (x)^0 + \binom{3}{1} (4y)^2 (x)^1 + \binom{3}{2} (4y)^1 (x)^2 + \binom{3}{3} (4y)^0 (x)^3\)
4. \((x + 4y)^3 = (x)^0 (4y)^1 + (x)^1 (4y)^1 + (x)^2 (4y)^2 + (x)^3 (4y)^3\)
**Explanation:**
The binomial theorem states that \((a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k\). Based on this theorem, the correct expansion of \((x + 4y)^3\) involves calculating the binomial coefficients, \(\binom{3}{k}\), and multiplying these by the terms raised to the powers as indicated in option 1. Here, the powers of \(x\) start from 3 and decrease to 0, while the powers of \(4y\) start from 0 and increase to 3.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd7486a49-7caa-4879-a485-66cd96298f23%2F7cf969d8-1280-4033-ba62-332a95cda0a9%2Fawvztq1n_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Question:**
Which is the correct expansion of \((x + 4y)^3\) using the binomial theorem?
1. \((x + 4y)^3 = \binom{3}{0} (x)^3 (4y)^0 + \binom{3}{1} (x)^2 (4y)^1 + \binom{3}{2} (x)^1 (4y)^2 + \binom{3}{3} (x)^0 (4y)^3\)
2. \((x + 4y)^3 = (4y)^0 + (x)^2 (4y)^1 + (x)^1 (4y)^2 + (x)^0 (4y)^3\)
3. \((x + 4y)^3 = \binom{3}{0} (4y)^3 (x)^0 + \binom{3}{1} (4y)^2 (x)^1 + \binom{3}{2} (4y)^1 (x)^2 + \binom{3}{3} (4y)^0 (x)^3\)
4. \((x + 4y)^3 = (x)^0 (4y)^1 + (x)^1 (4y)^1 + (x)^2 (4y)^2 + (x)^3 (4y)^3\)
**Explanation:**
The binomial theorem states that \((a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k\). Based on this theorem, the correct expansion of \((x + 4y)^3\) involves calculating the binomial coefficients, \(\binom{3}{k}\), and multiplying these by the terms raised to the powers as indicated in option 1. Here, the powers of \(x\) start from 3 and decrease to 0, while the powers of \(4y\) start from 0 and increase to 3.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
To evaluate:
We know that binomial expansion of is defined as
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education