Which expression can we use to solve Select the correct answer below: sec 0₁ sec² 0-1 tan 0 de of sec of se of se sec²0-sec²0 de sec² 0₁/sec² 0-1 sec 0 tan de sec² 0₁/sec² 0-1 de [x²√x²-10x² x² - 1 dx? Content attribution
Which expression can we use to solve Select the correct answer below: sec 0₁ sec² 0-1 tan 0 de of sec of se of se sec²0-sec²0 de sec² 0₁/sec² 0-1 sec 0 tan de sec² 0₁/sec² 0-1 de [x²√x²-10x² x² - 1 dx? Content attribution
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Calculus Problem Explanation
#### Topic: Integration of Functions Involving Square Roots
---
**Problem Statement:**
Which expression can we use to solve the integral \( \int x^2 \sqrt{x^2 - 1} \, dx \) ?
**Select the correct answer below:**
1. \( \int \sec^4 \theta \sqrt{\sec^2 \theta - 1} \tan \theta \, d\theta \)
2. \( \int \sec^4 \theta - \sec^2 \theta \, d\theta \)
3. \( \int \sec^2 \theta \sqrt{\sec^2 \theta - 1} - \sec \theta \tan \theta \, d\theta \)
4. \( \int \sec^2 \theta \sqrt{\sec^2 \theta - 1} \, d\theta \)
---
This problem involves finding the appropriate substitution to transform the given integral into a more manageable form. The integral \( \int x^2 \sqrt{x^2 - 1} \, dx \) typically suggests a trigonometric substitution, such as \( x = \sec \theta \), to simplify the square root expression. Carefully analyze which of the given choices correctly represents this substitution and transformation.
**Answer Explanation:**
- When \( x = \sec \theta \), \( dx = \sec \theta \tan \theta \, d\theta \).
- The expression under the square root, \( \sqrt{x^2 - 1} \), transforms to \( \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = \tan \theta \).
Using the substitution:
\[ x = \sec \theta \]
\[ dx = \sec \theta \tan \theta \, d\theta \]
\[ \sqrt{x^2 - 1} = \tan \theta \]
The integral becomes:
\[ \int (\sec \theta)^2 (\tan \theta) (\sec \theta \tan \theta \, d\theta) \]
\[ \int \sec^4 \theta \tan^2 \theta \, d\theta \]
Hence, the correct transformed integral is aligned with one of the provided options.
Please select the correct option to proceed with solving the integral.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa79c18d0-6a0e-4a38-9496-04f82bd62d69%2Faab25874-7970-4cbd-839b-12892639517d%2Fw3dujx_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Calculus Problem Explanation
#### Topic: Integration of Functions Involving Square Roots
---
**Problem Statement:**
Which expression can we use to solve the integral \( \int x^2 \sqrt{x^2 - 1} \, dx \) ?
**Select the correct answer below:**
1. \( \int \sec^4 \theta \sqrt{\sec^2 \theta - 1} \tan \theta \, d\theta \)
2. \( \int \sec^4 \theta - \sec^2 \theta \, d\theta \)
3. \( \int \sec^2 \theta \sqrt{\sec^2 \theta - 1} - \sec \theta \tan \theta \, d\theta \)
4. \( \int \sec^2 \theta \sqrt{\sec^2 \theta - 1} \, d\theta \)
---
This problem involves finding the appropriate substitution to transform the given integral into a more manageable form. The integral \( \int x^2 \sqrt{x^2 - 1} \, dx \) typically suggests a trigonometric substitution, such as \( x = \sec \theta \), to simplify the square root expression. Carefully analyze which of the given choices correctly represents this substitution and transformation.
**Answer Explanation:**
- When \( x = \sec \theta \), \( dx = \sec \theta \tan \theta \, d\theta \).
- The expression under the square root, \( \sqrt{x^2 - 1} \), transforms to \( \sqrt{\sec^2 \theta - 1} = \sqrt{\tan^2 \theta} = \tan \theta \).
Using the substitution:
\[ x = \sec \theta \]
\[ dx = \sec \theta \tan \theta \, d\theta \]
\[ \sqrt{x^2 - 1} = \tan \theta \]
The integral becomes:
\[ \int (\sec \theta)^2 (\tan \theta) (\sec \theta \tan \theta \, d\theta) \]
\[ \int \sec^4 \theta \tan^2 \theta \, d\theta \]
Hence, the correct transformed integral is aligned with one of the provided options.
Please select the correct option to proceed with solving the integral.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning