Which examples illustrate that a trinomial can be the product of two binomials? (Select all that apply.) 0 2а? - 4а - 6 %3D 2 (а2 — 2а — 3) Оа?+ 5а+63 (а +2) (а+3) О За? + 9а - 6 3 3(а? + За — 2) O a² + 2a + 4 = a² + a + a + 4 Da2+а — 20 3 (а+5) (а — 4)
Which examples illustrate that a trinomial can be the product of two binomials? (Select all that apply.) 0 2а? - 4а - 6 %3D 2 (а2 — 2а — 3) Оа?+ 5а+63 (а +2) (а+3) О За? + 9а - 6 3 3(а? + За — 2) O a² + 2a + 4 = a² + a + a + 4 Da2+а — 20 3 (а+5) (а — 4)
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Question:**
Which examples illustrate that a trinomial can be the product of two binomials? (Select all that apply.)
**Options:**
1. \( \square \, 2a^2 - 4a - 6 = 2 \left(a^2 - 2a - 3 \right) \)
2. \( \square \, a^2 + 5a + 6 = (a + 2)(a + 3) \)
3. \( \square \, 3a^2 + 9a - 6 = 3 \left(a^2 + 3a - 2 \right) \)
4. \( \square \, a^2 + 2a + 4 = a^2 + a + a + 4 \)
5. \( \square \, a^2 + a - 20 = (a + 5)(a - 4) \)
**Explanation:**
To determine which trinomials can be the product of two binomials, we must factorize them.
1. \( 2a^2 - 4a - 6 \) cannot be factorized straightforwardly into the product of two binomials. Simplifying the right side: \( 2(a^2 - 2a - 3) \), reveals:
\[
2(a^2 - 2a - 3) = 2(a - 3)(a + 1) = 2a^2 - 6a + 2a - 6
\]
Hence, \( 2a^2 - 4a - 6 \neq 2(a^2 - 2a - 3) \).
2. \( a^2 + 5a + 6 \) is indeed the product of two binomials:
\[
(a + 2)(a + 3) = a^2 + 3a + 2a + 6 = a^2 + 5a + 6
\]
3. \( 3a^2 + 9a - 6 \) can be factored as:
\[
3(a^2 + 3a - 2) = 3(a + 3)(a - 1) = 3a^2 + 9a -](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1b91f986-cff4-42a8-8faf-14c1255b04a2%2F5266f226-a1db-4d78-8fe6-f382c980344e%2Fbhx1dxn_processed.png&w=3840&q=75)
Transcribed Image Text:**Question:**
Which examples illustrate that a trinomial can be the product of two binomials? (Select all that apply.)
**Options:**
1. \( \square \, 2a^2 - 4a - 6 = 2 \left(a^2 - 2a - 3 \right) \)
2. \( \square \, a^2 + 5a + 6 = (a + 2)(a + 3) \)
3. \( \square \, 3a^2 + 9a - 6 = 3 \left(a^2 + 3a - 2 \right) \)
4. \( \square \, a^2 + 2a + 4 = a^2 + a + a + 4 \)
5. \( \square \, a^2 + a - 20 = (a + 5)(a - 4) \)
**Explanation:**
To determine which trinomials can be the product of two binomials, we must factorize them.
1. \( 2a^2 - 4a - 6 \) cannot be factorized straightforwardly into the product of two binomials. Simplifying the right side: \( 2(a^2 - 2a - 3) \), reveals:
\[
2(a^2 - 2a - 3) = 2(a - 3)(a + 1) = 2a^2 - 6a + 2a - 6
\]
Hence, \( 2a^2 - 4a - 6 \neq 2(a^2 - 2a - 3) \).
2. \( a^2 + 5a + 6 \) is indeed the product of two binomials:
\[
(a + 2)(a + 3) = a^2 + 3a + 2a + 6 = a^2 + 5a + 6
\]
3. \( 3a^2 + 9a - 6 \) can be factored as:
\[
3(a^2 + 3a - 2) = 3(a + 3)(a - 1) = 3a^2 + 9a -
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education