where f(t)={ a. y(t)=1+t-e'-2(t-e¹-¹)u(t-1) b. y(t)=1+t-e¹-2(t-e¹-1)u(t-1) y(t)=e¹-1-t+(-3e¹-1+2t+1)µ(t-1) c. d. y(t)=e¹-1+(-2e¹¹+t+1)µ(t-1) +1 0 1 F(s) = 1 / +

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

18.as soon as possible please

 

**Solve the following Differential Equation**

Given the differential equation \(y' = y = f(t)\) with the initial condition \(y(0) = 0\):

We have the piecewise function \(f(t)\) defined as:
\[ f(t) = 
\begin{cases} 
t + 1 & \text{for } 0 < t < 1 \\
t & \text{for } t > 1 
\end{cases}
\]

And the Laplace Transform \(F(s)\) of the function \(f(t)\):
\[ F(s) = \frac{1}{s} + \frac{1}{s^2} - \frac{e^{-5}}{s} \]

Which of the following is the correct \(y(t)\)?
a. \( y(t) = 1 + t - e^t - 2(t - e^{-1})µ(t-1) \)
b. \( y(t) = 1 + t - e - 2(t - e^{-1})µ(t-1) \)
c. \( y(t) = e^t - 1 + t + (-3e^{-1} + 2t + 1)µ(t-1) \)
d. \( y(t) = e^t - 1 + (-2e^{-1} + t + 1)µ(t-1) \)

**Select the correct option:**
- ○ a
- ○ b
- ○ c
- ○ d
Transcribed Image Text:**Solve the following Differential Equation** Given the differential equation \(y' = y = f(t)\) with the initial condition \(y(0) = 0\): We have the piecewise function \(f(t)\) defined as: \[ f(t) = \begin{cases} t + 1 & \text{for } 0 < t < 1 \\ t & \text{for } t > 1 \end{cases} \] And the Laplace Transform \(F(s)\) of the function \(f(t)\): \[ F(s) = \frac{1}{s} + \frac{1}{s^2} - \frac{e^{-5}}{s} \] Which of the following is the correct \(y(t)\)? a. \( y(t) = 1 + t - e^t - 2(t - e^{-1})µ(t-1) \) b. \( y(t) = 1 + t - e - 2(t - e^{-1})µ(t-1) \) c. \( y(t) = e^t - 1 + t + (-3e^{-1} + 2t + 1)µ(t-1) \) d. \( y(t) = e^t - 1 + (-2e^{-1} + t + 1)µ(t-1) \) **Select the correct option:** - ○ a - ○ b - ○ c - ○ d
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,