When working on a normal distribution other than the standard normal distribution you need to either first convert to the z-scores and then find probabilities using the standard normal distribution (N(0,1)) OR when using technology you can input the mean and standard deviation. P (a < X < b) = normalcdf(a,b,μ, o)=normalcdf(staring data value, ending data value, mean, standard deviation) to find the probability given the interval of data values. This is equal to P(
When working on a normal distribution other than the standard normal distribution you need to either first convert to the z-scores and then find probabilities using the standard normal distribution (N(0,1)) OR when using technology you can input the mean and standard deviation. P (a < X < b) = normalcdf(a,b,μ, o)=normalcdf(staring data value, ending data value, mean, standard deviation) to find the probability given the interval of data values. This is equal to P(
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question

Transcribed Image Text:When working on a normal distribution other than the standard normal
distribution you need to either first convert to the z-scores and then find
probabilities using the standard normal distribution (N(0,1)) OR when using
technology you can input the mean and standard deviation.
P (a < X < b) = normalcdf(a,b,μ, o)=normalcdf(staring data value, ending data
value, mean, standard deviation) to find the probability given the interval of data
values.
This is equal to P(<Z<b) = normalcdf(ª,b)=normalcdf(smaller z-score,
larger z-score)
For finding the data value given the area you can use invNorm. Again you either
need to convert the z-score back to the data value OR tell the calculator the mean
and standard deviation.
invNorm(area to the left, mean, standard deviation) = data value =X
invNorm(area to the left) = Z = Z-score. Then X = μ + Z. o
For the distribution N(10,2) match the probabilities below:
![P(X <a) = 0.1
P(X > a) = 0.1
[Choose ]
[Choose ]
a = 7.44
a = 12.56
6.71](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbd15efba-64e3-4a10-817e-35674de1fc1a%2Fc2e27388-9938-4ccf-95d6-139ba043e22c%2F3z8q0ga_processed.png&w=3840&q=75)
Transcribed Image Text:P(X <a) = 0.1
P(X > a) = 0.1
[Choose ]
[Choose ]
a = 7.44
a = 12.56
6.71
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Recommended textbooks for you

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc

Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning

Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning

Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON

The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman

Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman