When water flows across farmland, some soil is washed away, resulting in erosion. An experiment was conducted to investigate the effect of the rate of water flow (liters per second) on the amount of soil (kilograms) washed away. The data are given in the following table:   Flow rate 0.31 0.85 1.26 2.47 3.75 Eroded soil 0.82 1.95 2.18 3.01 6.07           Let xx represent the flow rate variable and yy represent the variable for soil eroded. Then   \bar x = 1.73, s_x = 1.38, \bar y = 2.81, s_y = 1.99xˉ=1.73,sx​=1.38,yˉ​=2.81,sy​=1.99   Use this to complete the following calculation of the correlation coefficient for these data.   r = \frac{1}{n-1}\left[\left(\frac{x_1 - \bar x}{s_x}\right)\left(\frac{y_1 - \bar y}{s_y}\right) + \left(\frac{x_2 - \bar x}{s_x}\right)\left(\frac{y_2 - \bar y}{s_y}\right) + \cdots + \left(\frac{x_n - \bar x}{s_x}\right)\left(\frac{y_n - \bar y}{s_y}\right)\right]r=n−11​[(sx​x1​−xˉ​)(sy​y1​−yˉ​​)+(sx​x2​−xˉ​)(sy​y2​−yˉ​​)+⋯+(sx​xn​−xˉ​)(sy​yn​−yˉ​​)]     \; \; \; = \frac{1}{5-1}\left[\left(\frac{x_1 - 1.73}{1.38}\right)\left(\frac{y_1 - 2.81}{1.99}\right) + \left(\frac{x_2 - 1.73}{1.38}\right)\left(\frac{y_2 - 2.81}{1.99}\right) + \cdots + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =5−11​[(1.38x1​−1.73​)(1.99y1​−2.81​)+(1.38x2​−1.73​)(1.99y2​−2.81​)+⋯+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]     \; \; \; = \frac{1}{4}\left[\left(\frac{0.31 - 1.73}{1.38}\right)\left(\frac{0.82 - 2.81}{1.99}\right) + \left(\frac{0.85 - 1.73}{1.38}\right)\left(\frac{1.95 - 2.81}{1.99}\right) + \cdots + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[(1.380.31−1.73​)(1.990.82−2.81​)+(1.380.85−1.73​)(1.991.95−2.81​)+⋯+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]     \; \; \; = \frac{1}{4}\left[1.03 + 0.27 + 0.11 + 0.06 + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[1.03+0.27+0.11+0.06+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]     \; \; \; = \frac{1}{4}\left[1.47 + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[1.47+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]   What is the value of rr? Give your answer to two decimal places

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

When water flows across farmland, some soil is washed away, resulting in erosion. An experiment was conducted to investigate the effect of the rate of water flow (liters per second) on the amount of soil (kilograms) washed away. The data are given in the following table:

 

Flow rate 0.31 0.85 1.26 2.47 3.75
Eroded soil 0.82 1.95 2.18 3.01 6.07

 

 

 

 

 

Let xx represent the flow rate variable and yy represent the variable for soil eroded. Then

 

\bar x = 1.73, s_x = 1.38, \bar y = 2.81, s_y = 1.99xˉ=1.73,sx​=1.38,yˉ​=2.81,sy​=1.99

 

Use this to complete the following calculation of the correlation coefficient for these data.

 

r = \frac{1}{n-1}\left[\left(\frac{x_1 - \bar x}{s_x}\right)\left(\frac{y_1 - \bar y}{s_y}\right) + \left(\frac{x_2 - \bar x}{s_x}\right)\left(\frac{y_2 - \bar y}{s_y}\right) + \cdots + \left(\frac{x_n - \bar x}{s_x}\right)\left(\frac{y_n - \bar y}{s_y}\right)\right]r=n−11​[(sx​x1​−xˉ​)(sy​y1​−yˉ​​)+(sx​x2​−xˉ​)(sy​y2​−yˉ​​)+⋯+(sx​xn​−xˉ​)(sy​yn​−yˉ​​)]

 

  \; \; \; = \frac{1}{5-1}\left[\left(\frac{x_1 - 1.73}{1.38}\right)\left(\frac{y_1 - 2.81}{1.99}\right) + \left(\frac{x_2 - 1.73}{1.38}\right)\left(\frac{y_2 - 2.81}{1.99}\right) + \cdots + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =5−11​[(1.38x1​−1.73​)(1.99y1​−2.81​)+(1.38x2​−1.73​)(1.99y2​−2.81​)+⋯+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]

 

  \; \; \; = \frac{1}{4}\left[\left(\frac{0.31 - 1.73}{1.38}\right)\left(\frac{0.82 - 2.81}{1.99}\right) + \left(\frac{0.85 - 1.73}{1.38}\right)\left(\frac{1.95 - 2.81}{1.99}\right) + \cdots + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[(1.380.31−1.73​)(1.990.82−2.81​)+(1.380.85−1.73​)(1.991.95−2.81​)+⋯+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]

 

  \; \; \; = \frac{1}{4}\left[1.03 + 0.27 + 0.11 + 0.06 + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[1.03+0.27+0.11+0.06+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]

 

  \; \; \; = \frac{1}{4}\left[1.47 + \left(\frac{x_5 - \bar x}{s_x}\right)\left(\frac{y_5 - \bar y}{s_y}\right)\right] =41​[1.47+(sx​x5​−xˉ​)(sy​y5​−yˉ​​)]

 

What is the value of rr? Give your answer to two decimal places 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,