When an electron is accelerated through a potential difference Δφ it acquires a kinetic energy e Δφ. Calculate the momentum, and hence the de Broglie wavelength, of an electron accelerated from rest through (a) 1.00V, (b) 1.00 kV, (c) 100 kV.
Compton effect
The incoming photons' energy must be in the range of an X-ray frequency to generate the Compton effect. The electron does not lose enough energy that reduces the wavelength of scattered photons towards the visible spectrum. As a result, with visible lights, the Compton effect is missing.
Recoil Velocity
The amount of backward thrust or force experienced by a person when he/she shoots a gun in the forward direction is called recoil velocity. This phenomenon always follows the law of conservation of linear momentum.
When an electron is accelerated through a potential difference Δφ it acquires a kinetic energy e Δφ. Calculate the momentum, and hence the de Broglie wavelength, of an electron accelerated from rest through (a) 1.00V, (b) 1.00 kV, (c) 100 kV.
kinetic energy of an electron,
where, is the potential difference
Step by step
Solved in 5 steps