When a spring is stretched to a length of 8.00 m, the speed of waves in the spring is 5.00 m/s. The simplest standing wave pattern for this spring is that of a single antinode between two nodes at opposite ends of the spring. (a) What is the frequency that produces this standing wave? (b) What is the next higher frequency for which a standing wave exists in this spring?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
When a spring is stretched to a
length of 8.00 m, the speed of
waves in the spring is 5.00 m/s.
The simplest standing wave pattern
for this spring is that of a single
antinode between two nodes at
opposite ends of the spring.
(a) What is the frequency that
produces this standing wave?
(b) What is the next higher
frequency for which a standing
wave exists in this spring?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps