What is the work function, W , of the metal surface? If this photocathode is illuminated by light with a wavelength 1 = 457.0 nm , what stopping а. b. voltage (absolute value), VHop , is needed to stop all of the photoelectrons from reaching the collector? What is the critical wavelength 1,? Light with any wavelength longer than 1 cannot С. produce any photoelectrons.
What is the work function, W , of the metal surface? If this photocathode is illuminated by light with a wavelength 1 = 457.0 nm , what stopping а. b. voltage (absolute value), VHop , is needed to stop all of the photoelectrons from reaching the collector? What is the critical wavelength 1,? Light with any wavelength longer than 1 cannot С. produce any photoelectrons.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
100%

Transcribed Image Text:When a metal surface, in a photoelectric effect apparatus, is illuminated with light at
2 = 289.5 nm , the maximum kinetic energy of the photoelectrons produced is
K
9.
31.95 еV .
max
What is the work function, W , of the metal surface?
If this photocathode is illuminated by light with a wavelength 2 = 457.0 nm , what stopping
а.
b.
voltage (absolute value), Vto
is needed to stop all of the photoelectrons from reaching the
stop
collector?
What is the critical wavelength 1,? Light with any wavelength longer than 1 cannot
С.
produce any photoelectrons.

Transcribed Image Text:Waves in general:
FORMULA PAGE 1
a y
1-dimensional wave equation:
1 a'y
; here v is the speed of the wave
v? ôt?
Solution: f(x- vt) or f(x+vt)
Harmonic or sinusoidal waves: y(x,t)= Asin(kx- ot)
2л
k
2n
= 27f; v=-
T
v = f2
General Constants:
-34
h = 6.626×10*J.s = 4.13567×10¬eV ·s ; (with recent revisions to the SI system of
units Planck's Constant is defined to have an exact value: h= 6.62607015×10¯“J·s)
–34
-19
hc = 1240 eV · nm; hc=1239.84eV · nm (for more accuracy); leV =1.6022×10-J
= 299,792, 458 m /s (exact);
-31
electron mass: m, =9.1094×10' kg
proton mass: m,
=1.6726×10-27 kg
Photons: E = hf
hc
; Protons: m,c² = 938.3MEV , Electrons: m.c² = 511.0keV
%3|
h
= 1.0546x10 34J•s = 6.5821×10-1eV ·s
Chapter 36. Diffraction
Single slit diffraction:
Minima:
a sin 0, = ma, m=1,2,3,...where a is the slit width, note: there is a maximum at
0 = 0
sin(a)
па
Intensity:
I(0) = ,,
a =
-sin(0)
m
a
Circular aperture: First minimum: sin 0 = 1.22-
Rayleigh's criterion ( 1 <d ): a =1.22-
d
Double slit experiment with slit separation d and slit width a:
sin a
Intensity: I(0) = I„(cos? B)|
where
B =
-sin 0 , a =
па
-sin O
Grating equation (normal incidence): d sin 0 = m
order in which the grating is being used, d is the line or groove spacing
m
= 0,1, 2,3,... (maxima), where m is the
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON