What is the weight w₁ of the Newton-Cotes formula with nodes O a. W₁=1/3 O b. w₁ 1/2 O c. W₁=1/√3 O d. W₁=1 Oe. W₁=√3 Of. W₁=2 Og. W₁=3 Q[ƒ; −1, 1] = woƒ(-1) + w₁ƒ(√√ ;-) + w₂f(1) Xo = -1, X₁ = 3 x₂ = 1?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Need help with this question. Thank you :)

 

What is the weight w₁ of the Newton-Cotes formula
with nodes
a. w₁=1/3
O b. w₁=1/2
O c. W₁=1/√3
O d. W₁=1
e. W₁=√3
Of. W₁=2
g. W₁=3
Q[ƒ; −1, 1] = wof(−1) + w₁ƒ(√√3/3) + + w₂f(1)
Xo = -1,
x₁ =
- اس
X₂ = 1?
Transcribed Image Text:What is the weight w₁ of the Newton-Cotes formula with nodes a. w₁=1/3 O b. w₁=1/2 O c. W₁=1/√3 O d. W₁=1 e. W₁=√3 Of. W₁=2 g. W₁=3 Q[ƒ; −1, 1] = wof(−1) + w₁ƒ(√√3/3) + + w₂f(1) Xo = -1, x₁ = - اس X₂ = 1?
Expert Solution
Step 1 formula

The newton cotes formula  is valid   for all polynomials up-to degree  n if the  n=(N-1) is odd and  

it is  n+1 if n=(N-1) is even. Where N is the number of nodes.

 Here number of nodes N=3 . 

So n=N-1=2 , even number.

Therefore the formula is valid  for polynomials of degree at-most  3.

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,