What is the value of p = lim+¹ when applying the Ratio Test to assess n→∞an a convergence of? What is the conclusion of the test? n=134 A. 1; test is inconclusive B. 0; convergent C. 0; divergent D. ~; divergent
What is the value of p = lim+¹ when applying the Ratio Test to assess n→∞an a convergence of? What is the conclusion of the test? n=134 A. 1; test is inconclusive B. 0; convergent C. 0; divergent D. ~; divergent
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Topic: Convergence of Series Using the Ratio Test
#### Problem Statement
What is the value of
\[ \rho = \lim_{{n \to \infty}} \left| \frac{{a_{n+1}}}{{a_n}} \right| \]
when applying the Ratio Test to assess the convergence of
\[ \sum_{{n=1}}^{\infty} \frac{6^n}{3^{n^2}}? \]
What is the conclusion of the test?
#### Multiple Choice Options
A. 1; test is inconclusive
B. 0; convergent
C. 0; divergent
D. ∞; divergent
#### Explanation
The ratio test is a method used to determine the absolute convergence of infinite series. The test involves taking the limit of the absolute value of the ratio of consecutive terms. Specifically, if
\[ a_n \]
represents the terms of the series, then
\[ \rho = \lim_{{n \to \infty}} \left| \frac{{a_{n+1}}}{{a_n}} \right| \]
Based on the value of
\[ \rho \],
the series can be classified as follows:
- If
\[ \rho < 1 \],
the series converges absolutely.
- If
\[ \rho > 1 \],
the series diverges.
- If
\[ \rho = 1 \],
the ratio test is inconclusive.
Let's compute the ratio for the given series
\[ \sum_{{n=1}}^{\infty} \frac{6^n}{3^{n^2}} \].
#### Mathematical Solution
Define
\[ a_n = \frac{6^n}{3^{n^2}} \].
Then,
\[ \frac{a_{n+1}}{a_n} = \frac{\frac{6^{n+1}}{3^{(n+1)^2}}}{\frac{6^n}{3^{n^2}}} = \frac{6^{n+1}}{3^{(n+1)^2}} \cdot \frac{3^{n^2}}{6^n} = \frac{6 \cdot 6^n}{3^{n^2 + 2n + 1}} \cdot \frac{3^{n^2}}{6](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F01ab8b4d-9f7b-47d6-9013-d88fec313f5d%2F2e7238a2-aa84-409c-b33e-e6a55af0e305%2Ff9sznha_processed.png&w=3840&q=75)
Transcribed Image Text:### Topic: Convergence of Series Using the Ratio Test
#### Problem Statement
What is the value of
\[ \rho = \lim_{{n \to \infty}} \left| \frac{{a_{n+1}}}{{a_n}} \right| \]
when applying the Ratio Test to assess the convergence of
\[ \sum_{{n=1}}^{\infty} \frac{6^n}{3^{n^2}}? \]
What is the conclusion of the test?
#### Multiple Choice Options
A. 1; test is inconclusive
B. 0; convergent
C. 0; divergent
D. ∞; divergent
#### Explanation
The ratio test is a method used to determine the absolute convergence of infinite series. The test involves taking the limit of the absolute value of the ratio of consecutive terms. Specifically, if
\[ a_n \]
represents the terms of the series, then
\[ \rho = \lim_{{n \to \infty}} \left| \frac{{a_{n+1}}}{{a_n}} \right| \]
Based on the value of
\[ \rho \],
the series can be classified as follows:
- If
\[ \rho < 1 \],
the series converges absolutely.
- If
\[ \rho > 1 \],
the series diverges.
- If
\[ \rho = 1 \],
the ratio test is inconclusive.
Let's compute the ratio for the given series
\[ \sum_{{n=1}}^{\infty} \frac{6^n}{3^{n^2}} \].
#### Mathematical Solution
Define
\[ a_n = \frac{6^n}{3^{n^2}} \].
Then,
\[ \frac{a_{n+1}}{a_n} = \frac{\frac{6^{n+1}}{3^{(n+1)^2}}}{\frac{6^n}{3^{n^2}}} = \frac{6^{n+1}}{3^{(n+1)^2}} \cdot \frac{3^{n^2}}{6^n} = \frac{6 \cdot 6^n}{3^{n^2 + 2n + 1}} \cdot \frac{3^{n^2}}{6
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning