What is the formula for the total distance traveled by an object with a velocity v(t) = sin(t) on the interval [0, 4]? 4 sin (t) dt – - ¹ sin (t) dt + sin (t) dt ₁ sin (t) dt 4 So sin (t) dt - f sin (t) dt - - f sin (t) dt + f sin (t) dt ㅠ
What is the formula for the total distance traveled by an object with a velocity v(t) = sin(t) on the interval [0, 4]? 4 sin (t) dt – - ¹ sin (t) dt + sin (t) dt ₁ sin (t) dt 4 So sin (t) dt - f sin (t) dt - - f sin (t) dt + f sin (t) dt ㅠ
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem Statement:
What is the formula for the total distance traveled by an object with a velocity \( v(t) = \sin(t) \) on the interval \([0, 4]\)?
### Options:
1. \(\int_{0}^{\pi} \sin(t) \, dt - \int_{\pi}^{4} \sin(t) \, dt\)
2. \(-\int_{0}^{1} \sin(t) \, dt + \int_{1}^{4} \sin(t) \, dt\)
3. \(\int_{1}^{0} \sin(t) \, dt - \int_{4}^{1} \sin(t) \, dt\)
4. \(-\int_{0}^{\pi} \sin(t) \, dt + \int_{4}^{\pi} \sin(t) \, dt\)
### Explanation:
#### Correct Answer:
The formula given in the highlighted answer is:
\[ \int_{0}^{\pi} \sin(t) \, dt - \int_{\pi}^{4} \sin(t) \, dt \]
#### Details:
On the interval [0, π], the sine function \( \sin(t) \) is non-negative, contributing positively to the distance traveled. On the interval \([π, 4]\), the sine function \( \sin(t) \) is non-positive, contributing negatively to the total displacement. Thus, the total distance traveled considering the absolute value is computed as follows:
1. **First Interval (0 to π):**
\(\int_{0}^{\pi} \sin(t) \, dt\)
2. **Second Interval (π to 4):**
\(-\int_{\pi}^{4} \sin(t) \, dt\)
This total formula accounts for the change in sign of \(\sin(t)\) over the intervals, ensuring that the total distance is properly computed as the sum of absolute changes rather than mere displacement.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb111f9a2-d607-44d0-9cf1-983102308b09%2Fcd82321e-0541-452c-8350-55acfb107280%2F3edsq_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement:
What is the formula for the total distance traveled by an object with a velocity \( v(t) = \sin(t) \) on the interval \([0, 4]\)?
### Options:
1. \(\int_{0}^{\pi} \sin(t) \, dt - \int_{\pi}^{4} \sin(t) \, dt\)
2. \(-\int_{0}^{1} \sin(t) \, dt + \int_{1}^{4} \sin(t) \, dt\)
3. \(\int_{1}^{0} \sin(t) \, dt - \int_{4}^{1} \sin(t) \, dt\)
4. \(-\int_{0}^{\pi} \sin(t) \, dt + \int_{4}^{\pi} \sin(t) \, dt\)
### Explanation:
#### Correct Answer:
The formula given in the highlighted answer is:
\[ \int_{0}^{\pi} \sin(t) \, dt - \int_{\pi}^{4} \sin(t) \, dt \]
#### Details:
On the interval [0, π], the sine function \( \sin(t) \) is non-negative, contributing positively to the distance traveled. On the interval \([π, 4]\), the sine function \( \sin(t) \) is non-positive, contributing negatively to the total displacement. Thus, the total distance traveled considering the absolute value is computed as follows:
1. **First Interval (0 to π):**
\(\int_{0}^{\pi} \sin(t) \, dt\)
2. **Second Interval (π to 4):**
\(-\int_{\pi}^{4} \sin(t) \, dt\)
This total formula accounts for the change in sign of \(\sin(t)\) over the intervals, ensuring that the total distance is properly computed as the sum of absolute changes rather than mere displacement.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 13 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning