What is the focal length of a makeup mirror that produces a magnification of 1.50 when a person’s face is 12.0 cm away? Explicitly show how you follow the following steps. Step 1. First make sure that image formation by a spherical mirror is involved. Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even if ray tracing is not specifically required by the problem. Write symbols and known values on the sketch. Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns). Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section. Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the mirror equation. Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and focal length correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are the object and image distances reasonable?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

What is the focal length of a makeup mirror that
produces a magnification of 1.50 when a person’s face is
12.0 cm away? Explicitly show how you follow the following steps.

Step 1. First make sure that image formation by a spherical mirror is involved.
Step 2. Determine whether ray tracing, the mirror equation, or both are required. A sketch is very useful even if ray
tracing is not specifically required by the problem. Write symbols and known values on the sketch.
Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).
Step 4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).
Step 5. If ray tracing is required, use the ray-tracing rules listed near the beginning of this section.
Step 6. Most quantitative problems require using the mirror equation. Use the examples as guides for using the mirror
equation.
Step 7. Check to see whether the answer makes sense. Do the signs of object distance, image distance, and focal length
correspond with what is expected from ray tracing? Is the sign of the magnification correct? Are the object and image
distances reasonable?

Expert Solution
steps

Step by step

Solved in 7 steps with 2 images

Blurred answer
Knowledge Booster
Mirrors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON