What is the best description of point (0, 0) on the plot C) above? (i) Local minimum (ii) Local maximum (iii) Saddle point (iv) Critical point but neither maximum, nor minimum, nor saddle point

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

ignore the top part of graph

 

Which of the following plots best represents level curves (with c=-1, 0, 0.5, 1, 2, and 4) of the
function f?
!!
2
1
0.5
-1
0,6
A)
B)
-2
-1
0
-2
-1
2
0:5
-2
C)
D)
-2
1
-2
1
2
Transcribed Image Text:Which of the following plots best represents level curves (with c=-1, 0, 0.5, 1, 2, and 4) of the function f? !! 2 1 0.5 -1 0,6 A) B) -2 -1 0 -2 -1 2 0:5 -2 C) D) -2 1 -2 1 2
What is the best description of point (0,0) on the plot C) above?
(i) Local minimum
(ii) Local maximum
(iii) Saddle point
(iv) Critical point but neither maximum, nor minimum, nor saddle point
Transcribed Image Text:What is the best description of point (0,0) on the plot C) above? (i) Local minimum (ii) Local maximum (iii) Saddle point (iv) Critical point but neither maximum, nor minimum, nor saddle point
Expert Solution
Step 1

At point (0,0) As we move in +ve x -direction, from x = (-2,2) and keeping y = 0.For x(-2,0) : f(x,0) decreases from 4 to 1                        : fx'(x,0) <0At x=0         : f(x,0) = 1                          : fx'(x,0) = 0   (minimum value)     For x(0,2)     : f(x,0) increases  from 1 to 4                         : fx'(x,0) >0As fx'(x,0) goes from -ve to 0 to +ve with increase in x hence, fx''(x,0) > 0.Hence f(x,0) is concave upward along +ve x-axis. 

Step 2

At point (0,0) As we move in +ve y -direction, from y = (-2,2) and keeping x = 0.For y(-2,0) : f(0,y) increases from -1 to 1                        : fy'(0,y) >0At y=0         : f(0,y) = 1                          : fy'(0,y) = 0   (maximum value)     For y(0,2)     : f(0,y) decreases  from 1 to -1                         : fy'(0,y) <0As fy'(0,y) goes from +ve to 0 to -ve with increase in y hence, fy''(0,y) < 0.Hence f(0,y) is concave downward along +ve y-axis. 

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Inequality
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning