What is the average rate of change of y = cos(2x) on the interval 0,? a. = b. -1 с. О d. 4 e.
What is the average rate of change of y = cos(2x) on the interval 0,? a. = b. -1 с. О d. 4 e.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Average rate of change?
![### Problem Statement
**Question:**
What is the average rate of change of \( y = \cos(2x) \) on the interval \([0, \frac{\pi}{2}]\)?
### Options:
a. \(- \frac{4}{\pi}\)
b. \(-1\)
c. \(0\)
d. \(\frac{\sqrt{2}}{2}\)
e. \(\frac{4}{\pi}\)
### Explanation:
To find the average rate of change of a function \( f(x) \) over an interval \([a, b]\), use the formula:
\[
\frac{f(b) - f(a)}{b - a}
\]
For the function \( y = \cos(2x) \) on \([0, \frac{\pi}{2}]\):
1. **Calculate \( f(a) \):**
\( f(0) = \cos(2 \times 0) = \cos(0) = 1 \)
2. **Calculate \( f(b) \):**
\( f\left(\frac{\pi}{2}\right) = \cos\left(2 \times \frac{\pi}{2}\right) = \cos(\pi) = -1 \)
3. **Apply the formula:**
\[
\text{Average Rate of Change} = \frac{-1 - 1}{\frac{\pi}{2} - 0} = \frac{-2}{\frac{\pi}{2}} = -\frac{4}{\pi}
\]
Thus, the correct answer is **a. \(- \frac{4}{\pi}\)**.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe7616f65-0250-4f00-8be8-7f3ea815d241%2F9d0805f2-fd6f-4990-a863-8267745ac049%2F3vrzf6_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement
**Question:**
What is the average rate of change of \( y = \cos(2x) \) on the interval \([0, \frac{\pi}{2}]\)?
### Options:
a. \(- \frac{4}{\pi}\)
b. \(-1\)
c. \(0\)
d. \(\frac{\sqrt{2}}{2}\)
e. \(\frac{4}{\pi}\)
### Explanation:
To find the average rate of change of a function \( f(x) \) over an interval \([a, b]\), use the formula:
\[
\frac{f(b) - f(a)}{b - a}
\]
For the function \( y = \cos(2x) \) on \([0, \frac{\pi}{2}]\):
1. **Calculate \( f(a) \):**
\( f(0) = \cos(2 \times 0) = \cos(0) = 1 \)
2. **Calculate \( f(b) \):**
\( f\left(\frac{\pi}{2}\right) = \cos\left(2 \times \frac{\pi}{2}\right) = \cos(\pi) = -1 \)
3. **Apply the formula:**
\[
\text{Average Rate of Change} = \frac{-1 - 1}{\frac{\pi}{2} - 0} = \frac{-2}{\frac{\pi}{2}} = -\frac{4}{\pi}
\]
Thus, the correct answer is **a. \(- \frac{4}{\pi}\)**.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)