What is the average rate of change of y = cos(2x) on the interval 0,? a. = b. -1 с. О d. 4 e.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Average rate of change?

### Problem Statement

**Question:**  
What is the average rate of change of \( y = \cos(2x) \) on the interval \([0, \frac{\pi}{2}]\)?

### Options:
a. \(- \frac{4}{\pi}\)  
b. \(-1\)  
c. \(0\)  
d. \(\frac{\sqrt{2}}{2}\)  
e. \(\frac{4}{\pi}\)  

### Explanation:
To find the average rate of change of a function \( f(x) \) over an interval \([a, b]\), use the formula:

\[
\frac{f(b) - f(a)}{b - a}
\]

For the function \( y = \cos(2x) \) on \([0, \frac{\pi}{2}]\):

1. **Calculate \( f(a) \):**  
   \( f(0) = \cos(2 \times 0) = \cos(0) = 1 \)

2. **Calculate \( f(b) \):**  
   \( f\left(\frac{\pi}{2}\right) = \cos\left(2 \times \frac{\pi}{2}\right) = \cos(\pi) = -1 \)

3. **Apply the formula:**  
   \[
   \text{Average Rate of Change} = \frac{-1 - 1}{\frac{\pi}{2} - 0} = \frac{-2}{\frac{\pi}{2}} = -\frac{4}{\pi}
   \]

Thus, the correct answer is **a. \(- \frac{4}{\pi}\)**.
Transcribed Image Text:### Problem Statement **Question:** What is the average rate of change of \( y = \cos(2x) \) on the interval \([0, \frac{\pi}{2}]\)? ### Options: a. \(- \frac{4}{\pi}\) b. \(-1\) c. \(0\) d. \(\frac{\sqrt{2}}{2}\) e. \(\frac{4}{\pi}\) ### Explanation: To find the average rate of change of a function \( f(x) \) over an interval \([a, b]\), use the formula: \[ \frac{f(b) - f(a)}{b - a} \] For the function \( y = \cos(2x) \) on \([0, \frac{\pi}{2}]\): 1. **Calculate \( f(a) \):** \( f(0) = \cos(2 \times 0) = \cos(0) = 1 \) 2. **Calculate \( f(b) \):** \( f\left(\frac{\pi}{2}\right) = \cos\left(2 \times \frac{\pi}{2}\right) = \cos(\pi) = -1 \) 3. **Apply the formula:** \[ \text{Average Rate of Change} = \frac{-1 - 1}{\frac{\pi}{2} - 0} = \frac{-2}{\frac{\pi}{2}} = -\frac{4}{\pi} \] Thus, the correct answer is **a. \(- \frac{4}{\pi}\)**.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,