What is f(x) = 3√xdx? O ○ F(x) = 2x² O F(x) = 2x² +C ○ F(x) = ² +C 3 ○ F(x)= ²³ 2z2 3 +0 +C

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculus Question: Integral of a Function

**Problem Statement:**

What is \( f(x) = \int 3 \sqrt{x} dx \)?

**Options:**

A) \( F(x) = 2x^{\frac{3}{2}} \)

B) \( F(x) = 2x^{\frac{3}{2}} + C \)

C) \( F(x) = \frac{x^{\frac{3}{2}}}{3} + C \)

D) \( F(x) = \frac{2x^{\frac{3}{2}}}{3} + C \)

---

**Explanation of Options:**
- **Option A:** Incorrect. It represents the antiderivative without the constant of integration, which is necessary for indefinite integrals.
  
- **Option B:** Incorrect. While it includes the constant of integration \(C\), the coefficient with the antiderivative is not correctly simplified.
  
- **Option C:** Incorrect. The coefficient \( \frac{1}{3} \) is incorrect in the expression of the antiderivative.
  
- **Option D:** Correct. This represents the correct antiderivative of \(3 \sqrt{x}\), which simplifies to \( \frac{2x^{\frac{3}{2}}}{3} + C\).

---

#### Detailed Solution:

To find the integral \( \int 3 \sqrt{x} dx \):

1. Express \( \sqrt{x} \) as \( x^{\frac{1}{2}} \):
   \[
   \int 3 x^{\frac{1}{2}} dx
   \]
   
2. Use the power rule for integration, which states \( \int x^n dx = \frac{x^{n+1}}{n+1} + C \):
   \[
   \int 3 x^{\frac{1}{2}} dx = 3 \int x^{\frac{1}{2}} dx
   \]
   
3. Apply the power rule:
   \[
   3 \left( \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right) + C = 3 \left( \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right) + C
   \]
   
4. Simpl
Transcribed Image Text:### Calculus Question: Integral of a Function **Problem Statement:** What is \( f(x) = \int 3 \sqrt{x} dx \)? **Options:** A) \( F(x) = 2x^{\frac{3}{2}} \) B) \( F(x) = 2x^{\frac{3}{2}} + C \) C) \( F(x) = \frac{x^{\frac{3}{2}}}{3} + C \) D) \( F(x) = \frac{2x^{\frac{3}{2}}}{3} + C \) --- **Explanation of Options:** - **Option A:** Incorrect. It represents the antiderivative without the constant of integration, which is necessary for indefinite integrals. - **Option B:** Incorrect. While it includes the constant of integration \(C\), the coefficient with the antiderivative is not correctly simplified. - **Option C:** Incorrect. The coefficient \( \frac{1}{3} \) is incorrect in the expression of the antiderivative. - **Option D:** Correct. This represents the correct antiderivative of \(3 \sqrt{x}\), which simplifies to \( \frac{2x^{\frac{3}{2}}}{3} + C\). --- #### Detailed Solution: To find the integral \( \int 3 \sqrt{x} dx \): 1. Express \( \sqrt{x} \) as \( x^{\frac{1}{2}} \): \[ \int 3 x^{\frac{1}{2}} dx \] 2. Use the power rule for integration, which states \( \int x^n dx = \frac{x^{n+1}}{n+1} + C \): \[ \int 3 x^{\frac{1}{2}} dx = 3 \int x^{\frac{1}{2}} dx \] 3. Apply the power rule: \[ 3 \left( \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right) + C = 3 \left( \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right) + C \] 4. Simpl
Expert Solution
steps

Step by step

Solved in 3 steps with 17 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning