What expression gives the values of the roots (if any) of the quadratic equation ax? + bx + c = 0 -b± /b² – ac X 1,2 2a b+ vb? – 4ac X1,2 2a b± vb² – ac X1,2 2a -6+ V6? – 4ac X1,2 2a
What expression gives the values of the roots (if any) of the quadratic equation ax? + bx + c = 0 -b± /b² – ac X 1,2 2a b+ vb? – 4ac X1,2 2a b± vb² – ac X1,2 2a -6+ V6? – 4ac X1,2 2a
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Quadratic Equation Roots**
To determine the values of the roots (if any) for the quadratic equation given by:
\[ ax^2 + bx + c = 0 \]
Consider the following expressions:
1. \( x_{1,2} = \frac{-b \pm \sqrt{b^2 - ac}}{2a} \)
2. \( x_{1,2} = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \)
3. \( x_{1,2} = \frac{b \pm \sqrt{b^2 - ac}}{2a} \)
4. \( x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
The correct expression for the roots of the quadratic equation is:
\[ x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
This formula is known as the quadratic formula, and it provides the solutions to any quadratic equation, where \( a \), \( b \), and \( c \) are coefficients of the equation, and \( b^2 - 4ac \) is the discriminant. The discriminant determines the nature of the roots:
- If \( b^2 - 4ac > 0 \), there are two distinct real roots.
- If \( b^2 - 4ac = 0 \), there is exactly one real root (a repeated root).
- If \( b^2 - 4ac < 0 \), there are no real roots (the roots are complex).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2810685e-1eeb-461a-9149-0ef27d84930f%2Fcaf03bae-1323-4be8-8146-5c4bb35340de%2Fvak5wo7_processed.png&w=3840&q=75)
Transcribed Image Text:**Quadratic Equation Roots**
To determine the values of the roots (if any) for the quadratic equation given by:
\[ ax^2 + bx + c = 0 \]
Consider the following expressions:
1. \( x_{1,2} = \frac{-b \pm \sqrt{b^2 - ac}}{2a} \)
2. \( x_{1,2} = \frac{b \pm \sqrt{b^2 - 4ac}}{2a} \)
3. \( x_{1,2} = \frac{b \pm \sqrt{b^2 - ac}}{2a} \)
4. \( x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
The correct expression for the roots of the quadratic equation is:
\[ x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
This formula is known as the quadratic formula, and it provides the solutions to any quadratic equation, where \( a \), \( b \), and \( c \) are coefficients of the equation, and \( b^2 - 4ac \) is the discriminant. The discriminant determines the nature of the roots:
- If \( b^2 - 4ac > 0 \), there are two distinct real roots.
- If \( b^2 - 4ac = 0 \), there is exactly one real root (a repeated root).
- If \( b^2 - 4ac < 0 \), there are no real roots (the roots are complex).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education