What can you tell me about implementing Kruskal Algorithm to find a minimum spanning tree for a different graphs in C++? How does this algorithm work?
Below are the steps which show how the algorithm works:
- Arrange all the edges in non-decreasing order of their weight.
- Pick the smallest edge. Examine if it makes a cycle with the spanning-tree formed so far. If the cycle is not formed, add this edge. Else, reject it.
- Repeat step#2 until there are (V-1) edges in the spanning tree.
Implementing Kruskal Algorithm to find a minimum spanning tree for a different graph in C++:
//Header file
#include<bits/stdc++.h>
using namespace std;
//Create shortcut for the integer pair
typedef pair<int, int> iPair;
//Structure to describe a graph
struct Graph
{
int V, E;
vector< pair<int, iPair> > edges;
Graph(int V, int E)
{
this->V = V;
this->E = E;
}
//Function to append an edge
void addEdge(int u, int v, int w)
{
edges.push_back({w, {u, v}});
}
// Call the function to find MST using Kruskal's MST algorithm
int kruskalMST();
};
//Structure to represent the Disjoint Sets
struct DisjointSets
{
int *parent, *rnk;
int n;
//Constructor
DisjointSets(int n)
{
//Allocate memory
this->n = n;
parent = new int[n+1];
rnk = new int[n+1];
//Initially, every vertex are in distinct sets and have rank 0.
for (int i = 0; i <= n; i++)
{
rnk[i] = 0;
//every element is parent of itself
parent[i] = i;
}
}
//Find the parent of a node 'u' Path Compression
int find(int u)
{
//Make the parent of the nodes in the path from u--> parent[u] point to parent[u]
if (u != parent[u])
parent[u] = find(parent[u]);
return parent[u];
}
//Union by rank
void merge(int x, int y)
{
x = find(x), y = find(y);
// Make tree with smaller height a subtree of the other tree
if (rnk[x] > rnk[y])
parent[y] = x;
else
parent[x] = y;
if (rnk[x] == rnk[y])
rnk[y]++;
}
};
// Functions returns weight of the MST
int Graph::kruskalMST()
{
int mst_wt = 0;
//Sort the edges in increasing order on basis of cost
sort(edges.begin(), edges.end());
//Create disjoint sets
DisjointSets ds(V);
//Iterate through all the sorted edges
vector< pair<int, iPair> >::iterator it;
for (it=edges.begin(); it!=edges.end(); it++)
{
int u = it->second.first;
int v = it->second.second;
int set_u = ds.find(u);
int set_v = ds.find(v);
//Examine if the selected edge is creating a cycle or not
if (set_u != set_v)
{
//Current edge will be in the MST so print it
cout << u << " - " << v << endl;
//Update MST weight
mst_wt += it->first;
//Merge the two sets
ds.merge(set_u, set_v);
}
}
return mst_wt;
}
//Main
int main()
{
//Create weighted and unidrected graph
int V = 9, E = 14;
Graph g(V, E);
g.addEdge(0, 1, 4);
g.addEdge(0, 7, 8);
g.addEdge(1, 2, 8);
g.addEdge(1, 7, 11);
g.addEdge(2, 3, 7);
g.addEdge(2, 8, 2);
g.addEdge(2, 5, 4);
g.addEdge(3, 4, 9);
g.addEdge(3, 5, 14);
g.addEdge(4, 5, 10);
g.addEdge(5, 6, 2);
g.addEdge(6, 7, 1);
g.addEdge(6, 8, 6);
g.addEdge(7, 8, 7);
cout << "Edges of MST: \n";
int mst_wt = g.kruskalMST();
cout<<endl;
cout << "Weight of MST: " << mst_wt;
return 0;
}
Step by step
Solved in 3 steps with 1 images