Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Can anyone please help me with this question please ?
![**Topic: Conversion of Cylindrical to Rectangular Coordinates**
### Problem Statement:
What are the rectangular coordinates of the point whose cylindrical coordinates are \((r = 2, \theta = \frac{2\pi}{3}, z = 7)\)?
**Rectangular Coordinates Formula:**
To convert from cylindrical to rectangular coordinates, use the following formulas:
- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)
**Calculation Steps:**
1. **Given:**
- \( r = 2 \)
- \( \theta = \frac{2\pi}{3} \)
- \( z = 7 \)
2. **Convert to Rectangular Coordinates:**
- Calculate \( x \):
\[
x = 2 \cdot \cos\left(\frac{2\pi}{3}\right)
\]
- Calculate \( y \):
\[
y = 2 \cdot \sin\left(\frac{2\pi}{3}\right)
\]
- \( z \) remains the same:
\[
z = 7
\]
**Solution Box:**
- \( x = \) [calculate result]
- \( y = \) [calculate result]
- \( z = 7 \)
**Note:** Calculate the trigonometric values for \(\cos\left(\frac{2\pi}{3}\right)\) and \(\sin\left(\frac{2\pi}{3}\right)\) to find the exact rectangular coordinates.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99d15f92-0bff-4b4d-a47e-2ac33d144271%2F646b6721-d473-4630-b9d7-2af9b498c8b3%2Fhc4n3fg_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Topic: Conversion of Cylindrical to Rectangular Coordinates**
### Problem Statement:
What are the rectangular coordinates of the point whose cylindrical coordinates are \((r = 2, \theta = \frac{2\pi}{3}, z = 7)\)?
**Rectangular Coordinates Formula:**
To convert from cylindrical to rectangular coordinates, use the following formulas:
- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)
**Calculation Steps:**
1. **Given:**
- \( r = 2 \)
- \( \theta = \frac{2\pi}{3} \)
- \( z = 7 \)
2. **Convert to Rectangular Coordinates:**
- Calculate \( x \):
\[
x = 2 \cdot \cos\left(\frac{2\pi}{3}\right)
\]
- Calculate \( y \):
\[
y = 2 \cdot \sin\left(\frac{2\pi}{3}\right)
\]
- \( z \) remains the same:
\[
z = 7
\]
**Solution Box:**
- \( x = \) [calculate result]
- \( y = \) [calculate result]
- \( z = 7 \)
**Note:** Calculate the trigonometric values for \(\cos\left(\frac{2\pi}{3}\right)\) and \(\sin\left(\frac{2\pi}{3}\right)\) to find the exact rectangular coordinates.
![**Conversion from Cylindrical to Rectangular Coordinates**
**Problem Statement:**
Determine the rectangular coordinates of a point, given its cylindrical coordinates:
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \)
- \( z = 7 \)
**Solution:**
The formulas to convert cylindrical coordinates \((r, \theta, z)\) to rectangular coordinates \((x, y, z)\) are as follows:
- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)
**Given:**
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \) (90 degrees)
- \( z = 7 \)
**Calculations:**
1. **Calculate \( x \):**
\[
x = 2 \cdot \cos\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0
\]
2. **Calculate \( y \):**
\[
y = 2 \cdot \sin\left(\frac{\pi}{2}\right) = 2 \cdot 1 = 2
\]
3. **The \( z \) coordinate remains unchanged:**
\[
z = 7
\]
**Result:**
The rectangular coordinates are:
- \( x = 0 \)
- \( y = 2 \)
- \( z = 7 \)
**Rectangular Coordinates:**
- \( X = \) [ ]
- \( Y = \) [ ]
- \( Z = \) [ ]
Fill in the boxes with the calculated values: \( X = 0 \), \( Y = 2 \), \( Z = 7 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99d15f92-0bff-4b4d-a47e-2ac33d144271%2F646b6721-d473-4630-b9d7-2af9b498c8b3%2Fhgyagti_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Conversion from Cylindrical to Rectangular Coordinates**
**Problem Statement:**
Determine the rectangular coordinates of a point, given its cylindrical coordinates:
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \)
- \( z = 7 \)
**Solution:**
The formulas to convert cylindrical coordinates \((r, \theta, z)\) to rectangular coordinates \((x, y, z)\) are as follows:
- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)
**Given:**
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \) (90 degrees)
- \( z = 7 \)
**Calculations:**
1. **Calculate \( x \):**
\[
x = 2 \cdot \cos\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0
\]
2. **Calculate \( y \):**
\[
y = 2 \cdot \sin\left(\frac{\pi}{2}\right) = 2 \cdot 1 = 2
\]
3. **The \( z \) coordinate remains unchanged:**
\[
z = 7
\]
**Result:**
The rectangular coordinates are:
- \( x = 0 \)
- \( y = 2 \)
- \( z = 7 \)
**Rectangular Coordinates:**
- \( X = \) [ ]
- \( Y = \) [ ]
- \( Z = \) [ ]
Fill in the boxes with the calculated values: \( X = 0 \), \( Y = 2 \), \( Z = 7 \).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning