What are of the point Coordinates the rectangular coordinates whose cynd cylindrical are (r = 2,₁ 0² = ²/= x₁ 2 =7)? ñ X = t Y = T 2=1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Can anyone please help me with this question please ?
**Topic: Conversion of Cylindrical to Rectangular Coordinates**

### Problem Statement:
What are the rectangular coordinates of the point whose cylindrical coordinates are \((r = 2, \theta = \frac{2\pi}{3}, z = 7)\)?

**Rectangular Coordinates Formula:**

To convert from cylindrical to rectangular coordinates, use the following formulas:

- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)

**Calculation Steps:**

1. **Given:**
   - \( r = 2 \)
   - \( \theta = \frac{2\pi}{3} \)
   - \( z = 7 \)

2. **Convert to Rectangular Coordinates:**
   - Calculate \( x \):
     \[
     x = 2 \cdot \cos\left(\frac{2\pi}{3}\right)
     \]
   - Calculate \( y \):
     \[
     y = 2 \cdot \sin\left(\frac{2\pi}{3}\right)
     \]
   - \( z \) remains the same:
     \[
     z = 7
     \]

**Solution Box:**
- \( x = \) [calculate result]
- \( y = \) [calculate result]
- \( z = 7 \)

**Note:** Calculate the trigonometric values for \(\cos\left(\frac{2\pi}{3}\right)\) and \(\sin\left(\frac{2\pi}{3}\right)\) to find the exact rectangular coordinates.
Transcribed Image Text:**Topic: Conversion of Cylindrical to Rectangular Coordinates** ### Problem Statement: What are the rectangular coordinates of the point whose cylindrical coordinates are \((r = 2, \theta = \frac{2\pi}{3}, z = 7)\)? **Rectangular Coordinates Formula:** To convert from cylindrical to rectangular coordinates, use the following formulas: - \( x = r \cdot \cos(\theta) \) - \( y = r \cdot \sin(\theta) \) - \( z = z \) **Calculation Steps:** 1. **Given:** - \( r = 2 \) - \( \theta = \frac{2\pi}{3} \) - \( z = 7 \) 2. **Convert to Rectangular Coordinates:** - Calculate \( x \): \[ x = 2 \cdot \cos\left(\frac{2\pi}{3}\right) \] - Calculate \( y \): \[ y = 2 \cdot \sin\left(\frac{2\pi}{3}\right) \] - \( z \) remains the same: \[ z = 7 \] **Solution Box:** - \( x = \) [calculate result] - \( y = \) [calculate result] - \( z = 7 \) **Note:** Calculate the trigonometric values for \(\cos\left(\frac{2\pi}{3}\right)\) and \(\sin\left(\frac{2\pi}{3}\right)\) to find the exact rectangular coordinates.
**Conversion from Cylindrical to Rectangular Coordinates**

**Problem Statement:**
Determine the rectangular coordinates of a point, given its cylindrical coordinates:
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \)
- \( z = 7 \)

**Solution:**

The formulas to convert cylindrical coordinates \((r, \theta, z)\) to rectangular coordinates \((x, y, z)\) are as follows:
- \( x = r \cdot \cos(\theta) \)
- \( y = r \cdot \sin(\theta) \)
- \( z = z \)

**Given:**
- \( r = 2 \)
- \( \theta = \frac{\pi}{2} \) (90 degrees)
- \( z = 7 \)

**Calculations:**

1. **Calculate \( x \):**
   \[
   x = 2 \cdot \cos\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0
   \]

2. **Calculate \( y \):**
   \[
   y = 2 \cdot \sin\left(\frac{\pi}{2}\right) = 2 \cdot 1 = 2
   \]

3. **The \( z \) coordinate remains unchanged:**
   \[
   z = 7
   \]

**Result:**
The rectangular coordinates are:
- \( x = 0 \)
- \( y = 2 \)
- \( z = 7 \)

**Rectangular Coordinates:**
- \( X = \) [ ]
- \( Y = \) [ ]
- \( Z = \) [ ] 

Fill in the boxes with the calculated values: \( X = 0 \), \( Y = 2 \), \( Z = 7 \).
Transcribed Image Text:**Conversion from Cylindrical to Rectangular Coordinates** **Problem Statement:** Determine the rectangular coordinates of a point, given its cylindrical coordinates: - \( r = 2 \) - \( \theta = \frac{\pi}{2} \) - \( z = 7 \) **Solution:** The formulas to convert cylindrical coordinates \((r, \theta, z)\) to rectangular coordinates \((x, y, z)\) are as follows: - \( x = r \cdot \cos(\theta) \) - \( y = r \cdot \sin(\theta) \) - \( z = z \) **Given:** - \( r = 2 \) - \( \theta = \frac{\pi}{2} \) (90 degrees) - \( z = 7 \) **Calculations:** 1. **Calculate \( x \):** \[ x = 2 \cdot \cos\left(\frac{\pi}{2}\right) = 2 \cdot 0 = 0 \] 2. **Calculate \( y \):** \[ y = 2 \cdot \sin\left(\frac{\pi}{2}\right) = 2 \cdot 1 = 2 \] 3. **The \( z \) coordinate remains unchanged:** \[ z = 7 \] **Result:** The rectangular coordinates are: - \( x = 0 \) - \( y = 2 \) - \( z = 7 \) **Rectangular Coordinates:** - \( X = \) [ ] - \( Y = \) [ ] - \( Z = \) [ ] Fill in the boxes with the calculated values: \( X = 0 \), \( Y = 2 \), \( Z = 7 \).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning