We wish to measure a characteristic of a machined part whose nominal size is 50 mm at 20 °C. For this, two different instruments are used; an analog micrometer and a digital vernier caliper, both recently calibrated and with the same resolution (0.01 mm). The calibration certificate data of the analog micrometer and the digital vernier are shown in tables 5 and 6 respectively. In both cases the calibration uncertainty does not include the contribution of resolution uncertainty. Additionally, there are drift studies for both instruments and it is established that the drift of the micrometer is ± 0.002 mm while the drift of the vernier is ± 0.02 mm.   The same number of measurements were performed with both instruments to avoid repeatability biases under controlled environmental conditions. Table 7 shows the results of the measurements of both instruments. The temperature of the piece was monitored with a digital thermometer whose calibration uncertainty is 0.1 °C, which already includes its resolution and its drift is neglected. The conditions during the tests are shown in table 8.   • Define the mathematical model for the measurand. Note that the measurand is the size of the part at 20 °C.  • Determine the average value of the part size from the micrometer measurements.  • Determine the combined standard uncertainty of the part size from the micrometer measurements. Take into account all the sources of uncertainty that are necessary. Neglect any parallax effects.  • Calculate the effective degrees of freedom of the measurement uncertainty of the micrometer.  • Calculate the expanded uncertainty. Select an appropriate coverage factor for a 95.45% confidence level.  • Determine the average value of the part size from the vernier measurements.  • Determine the combined standard uncertainty of the part size from vernier measurements. Take into account all the sources of uncertainty that are necessary. • Calculate the effective degrees of freedom of the vernier measurement uncertainty.  • Calculate the expanded uncertainty. Select an appropriate coverage factor for a 95.45% confidence level. • Compare the results using a normalized error criterion. Determine if they are statistically equal.  • Based on the previous results and your criteria, which instrument is preferable. Discuss the advantages of this instrument based on its use and performance; without commenting on the price.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
icon
Concept explainers
Question

We wish to measure a characteristic of a machined part whose nominal size is 50 mm at 20 °C. For this, two different instruments are used; an analog micrometer and a digital vernier caliper, both recently calibrated and with the same resolution (0.01 mm). The calibration certificate data of the analog micrometer and the digital vernier are shown in tables 5 and 6 respectively. In both cases the calibration uncertainty does not include the contribution of resolution uncertainty. Additionally, there are drift studies for both instruments and it is established that the drift of the micrometer is ± 0.002 mm while the drift of the vernier is ± 0.02 mm.

 

The same number of measurements were performed with both instruments to avoid repeatability biases under controlled environmental conditions. Table 7 shows the results of the measurements of both instruments. The temperature of the piece was monitored with a digital thermometer whose calibration uncertainty is 0.1 °C, which already includes its resolution and its drift is neglected. The conditions during the tests are shown in table 8.

 

• Define the mathematical model for the measurand. Note that the measurand is the size of the part at 20 °C. 
• Determine the average value of the part size from the micrometer measurements. 
• Determine the combined standard uncertainty of the part size from the micrometer measurements. Take into account all the sources of uncertainty that are necessary. Neglect any parallax effects. 
• Calculate the effective degrees of freedom of the measurement uncertainty of the micrometer. 
• Calculate the expanded uncertainty. Select an appropriate coverage factor for a 95.45% confidence level. 
• Determine the average value of the part size from the vernier measurements. 

• Determine the combined standard uncertainty of the part size from vernier measurements. Take into account all the sources of uncertainty that are necessary.
• Calculate the effective degrees of freedom of the vernier measurement uncertainty. 
• Calculate the expanded uncertainty. Select an appropriate coverage factor for a 95.45% confidence level.

• Compare the results using a normalized error criterion. Determine if they are statistically equal. 
• Based on the previous results and your criteria, which instrument is preferable. Discuss the advantages of this instrument based on its use and performance; without commenting on the price. 

 

Tabla 7. Resultados de medida del tamaño de la pieza
Repetición
1
2
3
4
5
6
7
8
9
10
Indicación del
micrómetro/mm
49,9
49,9
49,87
49,88
49,89
49,89
49,87
49,88
49,84
49,87
Indicación del vernier
/mm
Tabla 8. Condiciones de las pruebas
Mediciones con el
micrómetro
Temperatura inicial /°C
Temperatura final /°C
Coeficiente de expansión térmica
49,92
49,88
49,84
49,88
49,9
49,9
49,88
49,87
49,87
49,89
Mediciones con el
vernier
22,2
21,9
11,7E-6 ± 10% ( rectangular)
20,4
20,3
Transcribed Image Text:Tabla 7. Resultados de medida del tamaño de la pieza Repetición 1 2 3 4 5 6 7 8 9 10 Indicación del micrómetro/mm 49,9 49,9 49,87 49,88 49,89 49,89 49,87 49,88 49,84 49,87 Indicación del vernier /mm Tabla 8. Condiciones de las pruebas Mediciones con el micrómetro Temperatura inicial /°C Temperatura final /°C Coeficiente de expansión térmica 49,92 49,88 49,84 49,88 49,9 49,9 49,88 49,87 49,87 49,89 Mediciones con el vernier 22,2 21,9 11,7E-6 ± 10% ( rectangular) 20,4 20,3
Indicación del
micrómetro/mm
25,0023
30,0027
40,0036
50,0046
Indicación del
calibrador vernier
/mm
9,999
24,998
50,010
99,993
Tabla 5. Calibración del micrómetro
Valor del patrón
/mm
25,0000
30,0000
40,0000
50,0000
Corrección /mm
Valor del patrón
/mm
10,000
25,000
50,000
100,000
-0,0023
-0,0027
-0,0036
-0,0046
Tabla 6. Calibración del vernier
Error de
indicación /mm
-0,001
-0,002
0,010
-0,007
Incertidumbre expandida
(k=2; 95,45%; normal)
/mm
0,0015
0,0015
0,0015
0,0015
Incertidumbre expandida
(k=2; 95,45%; normal)
/mm
0,010
0,010
0,010
0,012
Transcribed Image Text:Indicación del micrómetro/mm 25,0023 30,0027 40,0036 50,0046 Indicación del calibrador vernier /mm 9,999 24,998 50,010 99,993 Tabla 5. Calibración del micrómetro Valor del patrón /mm 25,0000 30,0000 40,0000 50,0000 Corrección /mm Valor del patrón /mm 10,000 25,000 50,000 100,000 -0,0023 -0,0027 -0,0036 -0,0046 Tabla 6. Calibración del vernier Error de indicación /mm -0,001 -0,002 0,010 -0,007 Incertidumbre expandida (k=2; 95,45%; normal) /mm 0,0015 0,0015 0,0015 0,0015 Incertidumbre expandida (k=2; 95,45%; normal) /mm 0,010 0,010 0,010 0,012
Expert Solution
steps

Step by step

Solved in 9 steps with 23 images

Blurred answer
Knowledge Booster
Basic Principles of Engineering Metrology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY