We use the method of Lagrange multipliers We up the auxiliary function F given by We compute Hence - see HB pages 25-26. F(x, y, z,λ)=f(x, y, z) − λ(x² + y² + z² = r²) n - n n - = (²)² + (²)² + (£) ” − × (x² + y² + z² − r²). Fx = (na")1/(n+2) X=- (21)1/(n+2) nan xn+1 == - 2x = 0. n 21 1/(n+2) an/(n+2). how ?? come.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
M820-eTutorial3.pdf
× chi introduction rs Steven Nepub × 22m820mn-errat non-dated-u2.pdf
We use the method of Lagrange multipliers
We up the auxiliary function F given by
-
see HB pages 25-26.
We compute
Hence
F(x, y, z,λ) = f(x, y, z) — λ(x² + y² + z² = r²)
-
'
n
= (²) " + (²)² + (±) " − × (x² + y² + z² − r²).
Fx =
(nan) 1/(n+2)
x =
(21)1/(n+2)
nan
x+1
2x = 0.
=
- (2)
1/(n+2)
an/(n+2).
-
how
??
come.
Notice it follows from this that (21) 1/(0+2) < 0.
By symmetry of argument it follows
(M820 eTutorial 3)
08:18 AM
94%
y
(nb")1/(n+2)
(21)1/(n+2) '
and
(nc")1/(n+2)
z =
(21)1/(n+2) ·
13th March 2024
4/17
4(27.78%)
Х
Transcribed Image Text:M820-eTutorial3.pdf × chi introduction rs Steven Nepub × 22m820mn-errat non-dated-u2.pdf We use the method of Lagrange multipliers We up the auxiliary function F given by - see HB pages 25-26. We compute Hence F(x, y, z,λ) = f(x, y, z) — λ(x² + y² + z² = r²) - ' n = (²) " + (²)² + (±) " − × (x² + y² + z² − r²). Fx = (nan) 1/(n+2) x = (21)1/(n+2) nan x+1 2x = 0. = - (2) 1/(n+2) an/(n+2). - how ?? come. Notice it follows from this that (21) 1/(0+2) < 0. By symmetry of argument it follows (M820 eTutorial 3) 08:18 AM 94% y (nb")1/(n+2) (21)1/(n+2) ' and (nc")1/(n+2) z = (21)1/(n+2) · 13th March 2024 4/17 4(27.78%) Х
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,