We know that 1 inch is equal to 2.54 centimeters. Therefore, 24 inches 60 cm = 24 x 2.54 = 60.96+ 60 centimeters = 120.96 cm 48 inches 120 cm = 48 x 2.54 121.92+ 120 centimeters = 241.92 cm 1m 100 cm 1m 1000 mm length width m 12.096 24.192 (2) area= length * 292.674816 width m^2=292.674816m 2 cm 120.96 241.92 292.674816x102cm mm 2 1209.6 29267.4816 cm^2= 2926748.16 mm^2 2419.2 =292.674816x104m m2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please give solution to this conversion (handwritten)
We know that 1 inch is equal to 2.54 centimeters. Therefore, 24 inches 60 cm = 24 x 2.54 =
60.96+ 60 centimeters = 120.96 cm
48 inches 120 cm = 48 x 2.54 121.92+ 120 centimeters = 241.92 cm
1m 100 cm
1m 1000 mm
length
width
(2) area= length *
width
m
12.096
24.192
292.674816
m^2=292.674816m
2
cm
120.96
241.92
292.674816x102cm
mm
2
1209.6
29267.4816 cm^2= 2926748.16 mm^2
2419.2
=292.674816x104m
m2
Transcribed Image Text:We know that 1 inch is equal to 2.54 centimeters. Therefore, 24 inches 60 cm = 24 x 2.54 = 60.96+ 60 centimeters = 120.96 cm 48 inches 120 cm = 48 x 2.54 121.92+ 120 centimeters = 241.92 cm 1m 100 cm 1m 1000 mm length width (2) area= length * width m 12.096 24.192 292.674816 m^2=292.674816m 2 cm 120.96 241.92 292.674816x102cm mm 2 1209.6 29267.4816 cm^2= 2926748.16 mm^2 2419.2 =292.674816x104m m2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,