we have to two h(x) = n'(x) = of the function h(x) = h₁(x) = h(x) 1(x) x² √5-3x 11 11 find. = the derivative of order 2 7² 5-3x 1 Differentiating get. √5-3x · Qx - x²-½ (5-3x)²¯.! (-3) (√5-3x.) ² √5-3x 2x + Again differentiating h" (x) = (5-3x) 2.2x (5-3x) + 3x² (5-3x). √5-3x 20x12x² + 3x² (5-3x) 2 20x-9x² (5-3x) 3x2² √√5-3x 2 we get. (5-3x) * (20-18z) – (20x-9x²). 2- (5-3x) = (-3) ((5-32.) ³2) ² we (5-3x)² (20-18x) + 2 (20-9ײ¹) (5-3x) ¹² (5-3x)³ (5-3x) ¹2 (5-3x) (20-18x) + 2/2 (20-9x² (5-3x)² 2 (5-3x)²² 2100-60x-90x + 51x² + ² (20-9x²) } (5-3x.) ³ (5-3x) ²20 200 - 300x + 108 x ² + 180-81x²} 2 (5-3x) 27x²-300x+380 2 (5-3x) = 1/2
we have to two h(x) = n'(x) = of the function h(x) = h₁(x) = h(x) 1(x) x² √5-3x 11 11 find. = the derivative of order 2 7² 5-3x 1 Differentiating get. √5-3x · Qx - x²-½ (5-3x)²¯.! (-3) (√5-3x.) ² √5-3x 2x + Again differentiating h" (x) = (5-3x) 2.2x (5-3x) + 3x² (5-3x). √5-3x 20x12x² + 3x² (5-3x) 2 20x-9x² (5-3x) 3x2² √√5-3x 2 we get. (5-3x) * (20-18z) – (20x-9x²). 2- (5-3x) = (-3) ((5-32.) ³2) ² we (5-3x)² (20-18x) + 2 (20-9ײ¹) (5-3x) ¹² (5-3x)³ (5-3x) ¹2 (5-3x) (20-18x) + 2/2 (20-9x² (5-3x)² 2 (5-3x)²² 2100-60x-90x + 51x² + ² (20-9x²) } (5-3x.) ³ (5-3x) ²20 200 - 300x + 108 x ² + 180-81x²} 2 (5-3x) 27x²-300x+380 2 (5-3x) = 1/2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
TRANSCRIBE THE FOLLOWING SOLUTION IN DIGITAL FORMAT
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,