We have shown in class that the acceleration of a particle can be decomposed into components that are tangential and normal to its trajector as a = kv²N+ÏT where T and N are the unit tangent vector and principal (unit) normal vector, respectively, is the length along the trajectory, v = is the speed, and is the curvature of the trajectory. The curvature is related to the radius of curvature p by k = 1/p. The plane formed by T and N is called the osculating plane, and can be thought of as the instantaneous plane of the trajectory. The unit vector B = TX N is called the binormal vector, and by definition is always perpendicular to the osculating plane. We have shown in class that both T and B are parallel to N. The torsion r(t) of the trajectory is defined by B = -TIN or, equivalently, by dB de = -T, N. (i) The concept of curvature and radius of curvature are defined by extending those con- cepts from circles to curves in general. The curvature is defined as the rate (with respect to length along the curve) of rotation of the tangent vector. Show that the definition of curvature given in class, namely |T(t₁) - T(t₂)| lim 1₁-t₂|l(t₁) l(t₂)| d'T de = K₂ is in fact the rate of rotation of T (i.e., that it gives the rate of change of the angle T makes with a fixed direction). Show also that for a circle in the plane = 1/R where R is the radius of the circle.
We have shown in class that the acceleration of a particle can be decomposed into components that are tangential and normal to its trajector as a = kv²N+ÏT where T and N are the unit tangent vector and principal (unit) normal vector, respectively, is the length along the trajectory, v = is the speed, and is the curvature of the trajectory. The curvature is related to the radius of curvature p by k = 1/p. The plane formed by T and N is called the osculating plane, and can be thought of as the instantaneous plane of the trajectory. The unit vector B = TX N is called the binormal vector, and by definition is always perpendicular to the osculating plane. We have shown in class that both T and B are parallel to N. The torsion r(t) of the trajectory is defined by B = -TIN or, equivalently, by dB de = -T, N. (i) The concept of curvature and radius of curvature are defined by extending those con- cepts from circles to curves in general. The curvature is defined as the rate (with respect to length along the curve) of rotation of the tangent vector. Show that the definition of curvature given in class, namely |T(t₁) - T(t₂)| lim 1₁-t₂|l(t₁) l(t₂)| d'T de = K₂ is in fact the rate of rotation of T (i.e., that it gives the rate of change of the angle T makes with a fixed direction). Show also that for a circle in the plane = 1/R where R is the radius of the circle.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,