Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
please help i'm having trouble
![### Step 3
So far we have the following:
\[ \int_{\frac{\pi}{3}}^{\sec^{-1}(8)} \left( \frac{\cos(\theta)}{\sin^2(\theta)} \right) d\theta \]
We can now use the substitution \( u = \sin(\theta) \), so \( du = \boxed{\cos(\theta)} \checkmark \, d\theta \). Once more, we must also make a substitution for the limits of integration. When \( \theta = \frac{\pi}{3} \), \( u = \boxed{1} \red{\red{\text{x}}} \). Further, when
\[ \theta = \sec^{-1}(8), \, u = \boxed{- \frac{1}{\sin(\theta)}} \red{\red{\text{x}}}. \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc4971f23-5570-4fed-8cd6-5e1a07d18a42%2Fc3eda953-693e-44b2-bf30-51d4c188d5db%2F0galog8.png&w=3840&q=75)
Transcribed Image Text:### Step 3
So far we have the following:
\[ \int_{\frac{\pi}{3}}^{\sec^{-1}(8)} \left( \frac{\cos(\theta)}{\sin^2(\theta)} \right) d\theta \]
We can now use the substitution \( u = \sin(\theta) \), so \( du = \boxed{\cos(\theta)} \checkmark \, d\theta \). Once more, we must also make a substitution for the limits of integration. When \( \theta = \frac{\pi}{3} \), \( u = \boxed{1} \red{\red{\text{x}}} \). Further, when
\[ \theta = \sec^{-1}(8), \, u = \boxed{- \frac{1}{\sin(\theta)}} \red{\red{\text{x}}}. \]
![---
### Evaluate the Integral
\[
\int_{2}^{8} \frac{dx}{(x^2 - 1)^{3/2}}
\]
---
#### Step 1
Recall the Inverse Substitution Rule, where \(f\) and \(g\) are differentiable functions and \(g\) is one-to-one.
\[
\int f(x)dx = \int f(g(t))g'(t) \, dt
\]
We are given the following:
\[
\int_{2}^{8} \frac{dx}{(x^2 - 1)^{3/2}}
\]
We note that \((x^2 - 1)^{3/2} = \left(\sqrt{x^2 - 1}\right)^3\). Therefore, the following entry from the Table of Trigonometric Substitutions is appropriate.
\[
\begin{array}{|c|c|c|}
\hline
\text{Expression} & \text{Substitution} & \text{Identity} \\
\hline
\sqrt{x^2 - a^2} & x = a \sec(\theta), \quad 0 \leq \theta < \frac{\pi}{2} \quad \text{or} \quad \frac{\pi}{2} \leq \theta < \frac{3\pi}{2} & \sec^2(\theta) - 1 = \tan^2(\theta) \\
\hline
\end{array}
\]
If \( \left(\sqrt{x^2 - 1}\right)^3 = \left(\sqrt{x^2 - a^2}\right)^3 \), then \(a = 1\). Therefore, we can let \( x = \sec(\theta) \), so \(dx = \left(\sec(\theta)\tan(\theta)\right) \, d\theta\).
We also must make a substitution for the limits of integration in the definite integral. Since \( x = \sec(\theta) \), we note that when \( x = 2 \), \( \theta = \sec^{-1}(2) = \frac{\pi}{3}\). Furthermore, when \( x = 8 \), \( \theta = \sec^{-1}(8) \).
---
#### Step 2
We have determined that if we](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc4971f23-5570-4fed-8cd6-5e1a07d18a42%2Fc3eda953-693e-44b2-bf30-51d4c188d5db%2Fb95ypp9_processed.png&w=3840&q=75)
Transcribed Image Text:---
### Evaluate the Integral
\[
\int_{2}^{8} \frac{dx}{(x^2 - 1)^{3/2}}
\]
---
#### Step 1
Recall the Inverse Substitution Rule, where \(f\) and \(g\) are differentiable functions and \(g\) is one-to-one.
\[
\int f(x)dx = \int f(g(t))g'(t) \, dt
\]
We are given the following:
\[
\int_{2}^{8} \frac{dx}{(x^2 - 1)^{3/2}}
\]
We note that \((x^2 - 1)^{3/2} = \left(\sqrt{x^2 - 1}\right)^3\). Therefore, the following entry from the Table of Trigonometric Substitutions is appropriate.
\[
\begin{array}{|c|c|c|}
\hline
\text{Expression} & \text{Substitution} & \text{Identity} \\
\hline
\sqrt{x^2 - a^2} & x = a \sec(\theta), \quad 0 \leq \theta < \frac{\pi}{2} \quad \text{or} \quad \frac{\pi}{2} \leq \theta < \frac{3\pi}{2} & \sec^2(\theta) - 1 = \tan^2(\theta) \\
\hline
\end{array}
\]
If \( \left(\sqrt{x^2 - 1}\right)^3 = \left(\sqrt{x^2 - a^2}\right)^3 \), then \(a = 1\). Therefore, we can let \( x = \sec(\theta) \), so \(dx = \left(\sec(\theta)\tan(\theta)\right) \, d\theta\).
We also must make a substitution for the limits of integration in the definite integral. Since \( x = \sec(\theta) \), we note that when \( x = 2 \), \( \theta = \sec^{-1}(2) = \frac{\pi}{3}\). Furthermore, when \( x = 8 \), \( \theta = \sec^{-1}(8) \).
---
#### Step 2
We have determined that if we
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images

Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Transcribed Image Text:We have determined that if we let u = sin(0), then du
sec-¹ (8) cos(0)
sin²(0)
[sec=² (8)
Jπ/3
de =
63/8
√√3/2
cos(0) de on the interval
du
/3
2
-/
63
8
Applying the substitution gives us the following result.
Solution
Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning