We choose 2 balls at random from an urn containing 8 white, 4 black and 2 orange. Suppose we receive $2 for each black ball drawn and we lose $1 for each white ball drawn. Let the variable X be “net gains”. Find the probability distribution of X.
We choose 2 balls at random from an urn containing 8 white, 4 black and 2 orange. Suppose we receive $2 for each black ball drawn and we lose $1 for each white ball drawn. Let the variable X be “net gains”. Find the probability distribution of X.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
We choose 2 balls at random from an urn containing 8
white, 4 black and 2 orange. Suppose we receive $2
for each black ball drawn and we lose $1 for each
white ball drawn. Let the variable X be “net gains”. Find the
probability distribution of X.
Expert Solution
Step 1: Determine the given variable
Given:
- Total balls = 8 white + 4 black + 2 orange = 14 balls.
- Gains for black ball = $2.
- Loss for white ball = $1.
Let's enumerate all possible outcomes when drawing 2 balls:
- 2 white balls: Loss $2. (Net gain X = -$2)
- 1 white ball and 1 black ball: Gain $2 and loss $1. (Net gain X = $1)
- 2 black balls: Gain $4. (Net gain X = $4)
- 1 white ball and 1 orange ball: Loss $1. (Net gain X = -$1)
- 1 black ball and 1 orange ball: Gain $2. (Net gain X = $2)
- 2 orange balls: No gain or loss. (Net gain X = $0)
Step by step
Solved in 3 steps with 12 images
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON