We can also derive the other identities below (1.137) sin−¹(z) = −i ln (iz + √√1 − z²), sinh¯¹(z) = ln (z + √1 + z² - tan−¹(z) = — [ln(1 − iz) − In(1 + iz)] - i tanh¯¹(z) = = [ln(1 + z) — ln(1 − z)]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please provide solution for the following equations below.
We can also derive the other identities below (1.137)
sin−¹(z) = −i ln (iz + √√1 − z²), sinh¯¹(z) = ln (z + √1 + z²
tan−¹(z) = — [ln(1 − iz) − In(1 + iz)]
-
i
tanh¯¹(z) = = [ln(1 + z) — ln(1 − z)]
Transcribed Image Text:We can also derive the other identities below (1.137) sin−¹(z) = −i ln (iz + √√1 − z²), sinh¯¹(z) = ln (z + √1 + z² tan−¹(z) = — [ln(1 − iz) − In(1 + iz)] - i tanh¯¹(z) = = [ln(1 + z) — ln(1 − z)]
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,