Water vapor enters the turbine at a steady state of 3 MPa pressure, 400°C temperature and 160 m/s speed. It exits the turbine as saturated steam at 100°C and 100 m/s. When the average surface temperature is 350 K, the heat transfer from the turbine to its surroundings is 30 kJ per kg of steam. a) Determine the work produced in kJ by considering only the turbine and its components as the control volume, and determine the entropy production in kJ/K for each kg steam flow. b) The steam turbine is located in a factory with an ambient temperature of 27°C. Determine the entropy generation in kJ/K for each kg of steam flow, including the turbine and its surroundings, and heat transfer from the control volume to ambient temperature, using the extended control volume approach.
Water vapor enters the turbine at a steady state of 3 MPa pressure, 400°C temperature and 160 m/s speed. It exits the turbine as saturated steam at 100°C and 100 m/s. When the average surface temperature is 350 K, the heat transfer from the turbine to its surroundings is 30 kJ per kg of steam. a) Determine the work produced in kJ by considering only the turbine and its components as the control volume, and determine the entropy production in kJ/K for each kg steam flow. b) The steam turbine is located in a factory with an ambient temperature of 27°C. Determine the entropy generation in kJ/K for each kg of steam flow, including the turbine and its surroundings, and heat transfer from the control volume to ambient temperature, using the extended control volume approach.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps