Water is the working fluid in an ideal Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 480°C. The condenser pressure is 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle (a) the rate of heat transfer to the working fluid passing through the steam generator, in kW. (b) the thermal efficiency. (c) the mass flow rate of condenser cooling water, in kg/h, if the cooling water enters the condenser at 15°C and exits at 35°C with negligible pressure change.
Water is the working fluid in an ideal Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 480°C. The condenser pressure is 8 kPa. The net power output of the cycle is 100 MW. Determine for the cycle (a) the rate of heat transfer to the working fluid passing through the steam generator, in kW. (b) the thermal efficiency. (c) the mass flow rate of condenser cooling water, in kg/h, if the cooling water enters the condenser at 15°C and exits at 35°C with negligible pressure change.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:Water is the working fluid in an ideal Rankine
cycle. Superheated vapor enters the turbine at 8
MPa, 480°C. The condenser pressure is 8 kPa.
The net power output of the cycle is 100 MW.
Determine for the cycle (a) the rate of heat
transfer to the working fluid passing through the
steam generator, in kW. (b) the thermal
efficiency. (c) the mass flow rate of condenser
cooling water, in kg/h, if the cooling water enters
the condenser at 15°C and exits at 35°C with
negligible pressure change.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY