Water is pumped through a vertical steel pipe to an elevated tank. D = 10 cm, P₁= 1.6 MPa, L = 80 m, Q = 0.02 m³/s. Find: Pressure at point 80 m above pump, "P₂=?" Properties: Water (20 °C), Table A.5: y = 9790 N/m³. Sol. Tips: First Compute "Re", and "Relative roughness". Plot them on chart below to mark value of friction coefficient “f=?”. Then Compute friction head loss "hf=?", and compute pressure by Bernoulli equation! Resistance coefficient, / 0.100 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.025 0.020 0.015 0.010 0.009 0.008 Laminar flow 10³ 64 Re 2 10³ 4 2 4 6 8104 6 8104 2 2 Ref¹/2_D2/2 (22/1/2 2 6 8 105 Fully rough turbulent flow 4 6 8105 Smooth pipes 2 Re VD 4 46 8105 6 8105 2 2 6 8107 4 0.05 0.04 0.03 0.02 0.015 0.01 0.0081 0.006 0.004 0.002 0.001 0.0008 0.0006 0.0004 Relative roughness, 0.0002 0.0001 0.00005 0.00001 6 8108
Water is pumped through a vertical steel pipe to an elevated tank. D = 10 cm, P₁= 1.6 MPa, L = 80 m, Q = 0.02 m³/s. Find: Pressure at point 80 m above pump, "P₂=?" Properties: Water (20 °C), Table A.5: y = 9790 N/m³. Sol. Tips: First Compute "Re", and "Relative roughness". Plot them on chart below to mark value of friction coefficient “f=?”. Then Compute friction head loss "hf=?", and compute pressure by Bernoulli equation! Resistance coefficient, / 0.100 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.025 0.020 0.015 0.010 0.009 0.008 Laminar flow 10³ 64 Re 2 10³ 4 2 4 6 8104 6 8104 2 2 Ref¹/2_D2/2 (22/1/2 2 6 8 105 Fully rough turbulent flow 4 6 8105 Smooth pipes 2 Re VD 4 46 8105 6 8105 2 2 6 8107 4 0.05 0.04 0.03 0.02 0.015 0.01 0.0081 0.006 0.004 0.002 0.001 0.0008 0.0006 0.0004 Relative roughness, 0.0002 0.0001 0.00005 0.00001 6 8108
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Please answer question below

Transcribed Image Text:Problem
Water is pumped through a vertical steel pipe to an elevated tank.
D = 10 cm, P₁= 1.6 MPa, L = 80 m, Q = 0.02 m³/s.
Find: Pressure at point 80 m above pump, "P₂=?"
Properties: Water (20 °C), Table A.5: y = 9790 N/m³.
Sol. Tips: First Compute "Re", and "Relative roughness". Plot them on chart below to mark value of friction
coefficient "f=?". Then Compute friction head loss "hf=?", and compute pressure by Bernoulli equation!
Resistance coefficient, f
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.025
0.020
0.015
0.010
0.009
0.008
Laminar
10³
64
Re
J
2
10³
LU
2
M
LI
4
4 68104
2
6 8104
2
Ref¹/2 =
4
D3/2 (20) 12
4 68105
6 8105
Fully rough turbulent flow
Smooth pipes
2
2
Re=VD
4
6 8105
6 8106
2
2 4 6 8107
68
2
0.05
0.04
0.03
0.02
0.015
0.01
0.0081
0.006
0.004
0.002
0.001
0.0008
0.0006
0.0004
0.0002
0.0001
0.00005
0.00001
6 8108
Relative roughness,
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning