Water at 20°C is to be pumped from one tank (ZA=5 m) to another tank at a higher elevation (ZB=13 m) through two 36 m long pipes connected in parallel, as shown in the figure. . The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water will be pumped via a 70 percent efficient motor-pump coupling that extracts 8 kW of electrical power during operation. Minor losses and head loss in the pipes connecting the pipe joints parallel to the two tanks are considered negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes. Hypothesis: 1.The flow is stationary and incompressible. 2. The input elects are negligible and therefore the flow is fully developed. 3. The elevation of deposits remains constant. 4. Minor losses and head loss in pipes other than parallel pipes are said to be negligible. 5. The flows through both pipes are turbulent (to be verified).

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

Water at 20°C is to be pumped from one tank (ZA=5 m) to another tank at a higher elevation (ZB=13 m) through two 36 m long pipes connected in parallel, as shown in the figure. . The pipes are made of commercial steel, and the diameters of the two pipes are 4 and 8 cm. Water will be pumped via a 70 percent efficient motor-pump coupling that extracts 8 kW of electrical power during operation. Minor losses and head loss in the pipes connecting the pipe joints parallel to the two tanks are considered negligible. Determine the total flow rate between the reservoirs and the flow rate through each of the parallel pipes.

Hypothesis:

1.The flow is stationary and incompressible.

2. The input elects are negligible and therefore the flow is fully developed.

3. The elevation of deposits remains constant.

4. Minor losses and head loss in pipes other than parallel pipes are said to be negligible.

5. The flows through both pipes are turbulent (to be verified).

2₁=5m
Pump
L₁ = 36 m
D₁ =4 cm
Control
volume
-boundary
D₂ = 8 cm
L₂= 36 m
B
2g = 13 m
Transcribed Image Text:2₁=5m Pump L₁ = 36 m D₁ =4 cm Control volume -boundary D₂ = 8 cm L₂= 36 m B 2g = 13 m
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 18 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY