W, complete following: a. Determine the number of degrees of indeterminaey b. Solve for all reactions using reaction B (a roller) as a redundant e. Draw the shear and moment diagrams ww 4 kN/m 2 m

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Which method is correct?

### Structural Analysis of a Beam

#### Notations and Assumptions
- **M<sub>A</sub>**: Moment at support A
- **R<sub>B</sub>**: Reaction at support B
- **w**: Uniformly distributed load (UDL) of 4 kN/m
- Span sections: AB = 3m, BC = 2m

#### (a) Degree of Indeterminacy
- Total reactions, R = 2
- Number of equilibrium equations, e = 3
- Degree of indeterminacy = R - e = 3 - 2 = 1

#### (b) Analysis Taking R<sub>B</sub> as Redundant Force
1. **Removing the Redundant Force:**
   - Consider the beam without R<sub>B</sub>.
   - Calculation for deflection due to UDL at B:
     - \(\Delta_{D1} = \frac{wL^4}{8EI} = \frac{4 \times 8^4}{8EI} = \frac{2048}{EI}\)

2. **Removing the External Load:**
   - Consider the beam without the external load.
   - Calculation for deflection due to R<sub>B</sub>:
     - \(\Delta_{B2} = \frac{R_B L^3}{3EI} + \frac{R_B \times 8^3}{3EI} = \frac{R_B \times 8^3}{3EI}\)

3. **Deflection at B is Zero:**
   - Set the total deflection to zero: \(\Delta_{B1} + \Delta_{B2} = 0\)
   - Solving: \(\frac{2048}{EI} + \frac{R_B \times 8^3}{3EI} = 0\)
   - Find \(R_B\): \(R_B = 12 \text{ kN}\)

4. **Reactions:**
   - \(R_A + R_B = \text{Total Load}\)
   - \(R_A = 40 - 12 = 28 \text{ kN}\)

#### Shear Force and Bending Moment Analysis

1. **Shear Force Diagram:**
   - VA = R_A = 28 kN
   - V_AB =
Transcribed Image Text:### Structural Analysis of a Beam #### Notations and Assumptions - **M<sub>A</sub>**: Moment at support A - **R<sub>B</sub>**: Reaction at support B - **w**: Uniformly distributed load (UDL) of 4 kN/m - Span sections: AB = 3m, BC = 2m #### (a) Degree of Indeterminacy - Total reactions, R = 2 - Number of equilibrium equations, e = 3 - Degree of indeterminacy = R - e = 3 - 2 = 1 #### (b) Analysis Taking R<sub>B</sub> as Redundant Force 1. **Removing the Redundant Force:** - Consider the beam without R<sub>B</sub>. - Calculation for deflection due to UDL at B: - \(\Delta_{D1} = \frac{wL^4}{8EI} = \frac{4 \times 8^4}{8EI} = \frac{2048}{EI}\) 2. **Removing the External Load:** - Consider the beam without the external load. - Calculation for deflection due to R<sub>B</sub>: - \(\Delta_{B2} = \frac{R_B L^3}{3EI} + \frac{R_B \times 8^3}{3EI} = \frac{R_B \times 8^3}{3EI}\) 3. **Deflection at B is Zero:** - Set the total deflection to zero: \(\Delta_{B1} + \Delta_{B2} = 0\) - Solving: \(\frac{2048}{EI} + \frac{R_B \times 8^3}{3EI} = 0\) - Find \(R_B\): \(R_B = 12 \text{ kN}\) 4. **Reactions:** - \(R_A + R_B = \text{Total Load}\) - \(R_A = 40 - 12 = 28 \text{ kN}\) #### Shear Force and Bending Moment Analysis 1. **Shear Force Diagram:** - VA = R_A = 28 kN - V_AB =
# Beam Analysis and Indeterminacy

### Problem Statement
For the beam shown below, complete the following:
1. Determine the number of degrees of indeterminacy.
2. Solve for all reactions using reaction B (a roller) as a redundant.
3. Draw the shear and moment diagrams.

![Beam Diagram](beam-diagram.jpg)  
- **Uniformly Distributed Load (UDL)**: \( w = 4 \, \text{kN/m} \)
- **Beam Span:** \( 8 \, \text{m} \) to point A, \( 2 \, \text{m} \) to point C

### Analytical Steps

#### Step 2: Analysis with Redundant Reaction
**Part (b)**

- *Taking Reaction B as redundant:*

  - **UDL Contribution:**
    \[
    (\delta B)_{\text{udl}} = \frac{wx^2}{24EI}(6L^2 - 4Lx + x^2)
    \]
    - \( x = 8 \, \text{m} \)
    - \( L = 10 \, \text{m} \)

  \[
  (\delta B)_{\text{udl}} = \frac{468 \times 8^2}{24 \times 10^4} \left( (6 \times 10^2) - 4 \times (10) \times (8) + 8^2 \right)
  \]
  \[
  (\delta B)_{\text{udl}} = \frac{468 \times 64}{240} \times \left( 3600 - 320 + 64 \right)
  \]

- **Point Load Contribution:**
  
  \[
  (\delta B)_R = \frac{-Ka^2}{6EI}(3a - x)
  \]
  - \( a = x = 8 \, \text{m} \)

  \[
  (\delta B)_R = \frac{-R \times 64}{6 \times 10} \times (3 \times 8 - 8)
  \]
  \[
  (\delta B)_R = \frac{-R\times 64}{60} \times 16
  \]

- **Balance Equations:**
  \[
  (\delta B)_R
Transcribed Image Text:# Beam Analysis and Indeterminacy ### Problem Statement For the beam shown below, complete the following: 1. Determine the number of degrees of indeterminacy. 2. Solve for all reactions using reaction B (a roller) as a redundant. 3. Draw the shear and moment diagrams. ![Beam Diagram](beam-diagram.jpg) - **Uniformly Distributed Load (UDL)**: \( w = 4 \, \text{kN/m} \) - **Beam Span:** \( 8 \, \text{m} \) to point A, \( 2 \, \text{m} \) to point C ### Analytical Steps #### Step 2: Analysis with Redundant Reaction **Part (b)** - *Taking Reaction B as redundant:* - **UDL Contribution:** \[ (\delta B)_{\text{udl}} = \frac{wx^2}{24EI}(6L^2 - 4Lx + x^2) \] - \( x = 8 \, \text{m} \) - \( L = 10 \, \text{m} \) \[ (\delta B)_{\text{udl}} = \frac{468 \times 8^2}{24 \times 10^4} \left( (6 \times 10^2) - 4 \times (10) \times (8) + 8^2 \right) \] \[ (\delta B)_{\text{udl}} = \frac{468 \times 64}{240} \times \left( 3600 - 320 + 64 \right) \] - **Point Load Contribution:** \[ (\delta B)_R = \frac{-Ka^2}{6EI}(3a - x) \] - \( a = x = 8 \, \text{m} \) \[ (\delta B)_R = \frac{-R \times 64}{6 \times 10} \times (3 \times 8 - 8) \] \[ (\delta B)_R = \frac{-R\times 64}{60} \times 16 \] - **Balance Equations:** \[ (\delta B)_R
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Silicon
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning